DUTs
DUT_EPS
TYPE DUT_EPS :
STRUCT
// Contains EPS flags
{attribute 'pytmc' := '
pv: nFlags
io: i
field: DESC Contains EPS flags
'}
nFlags: UDINT := 16#FFFFFFFF;
// Desciption of values nFlags contains
{attribute 'pytmc' := '
pv: sFlagDesc
io: i
field: DESC semicolon-delimited nFlag variable
'}
sFlagDesc: STRING;
// Name to use for log messages.
{attribute 'pytmc' := '
pv: sMessage
io: i
field: DESC Message from EPS to usr
'}
sMessage: STRING;
// Keep Track if nFlags are all true
{attribute 'pytmc' := '
pv: bEPS_OK
io: i
field: DESC check if nFlags are all true
'}
bEPS_OK : BOOL := TRUE;
END_STRUCT
END_TYPE
- Related:
E_EcatDiagState
TYPE E_EcatDiagState :
(
Idle := 0,
GetSlaveAddresses := 1,
GetSlaveStates := 2,
GetTopoDataLen := 3,
GetTopoData := 4,
ScanSlaves := 5,
GetSlaveIdentity := 6,
GetSlaveName := 7,
GetScannedSlaveName := 8,
LogDiagnostics := 9,
Done := 8000
);
END_TYPE
E_EcCommState
TYPE E_EcCommState : (
eEcState_UNDEFINED := 0,
eEcState_INIT := 1,
eEcState_PREOP := 2,
eEcState_BOOT := 3,
eEcState_SAFEOP := 4,
eEcState_OP := 8
) UDINT;
END_TYPE
E_LogEventType_WC
{attribute 'qualified_only'}
{attribute 'strict'}
TYPE E_LogEventType_WC :
(
AlarmCleared := 0,
AlarmConfirmed := 1,
AlarmRaised := 2,
MessageSent := 3
);
END_TYPE
(* Note: this is the working copy version that is automatically made a
global type when pinning ST_LoggingEventInfo *)
E_Subsystem
//LCLS Defined subsystems, make sure these correspond with casSubsystems in FB_LogMessage
TYPE E_Subsystem :
(
NILVALUE := 0, //Undefined system
VACUUM := 1, //Vacuum control system
MPS := 2, //Machine protection system
MOTION := 3, //Motion control systems
FIELDBUS := 4, //EtherCAT networks
SDS := 5, //Sample delivery system
OPTICS := 6 //Optics control system
)WORD;
END_TYPE
- Related:
ST_EcDevice
//EtherCAT Device struct for EtherCAT diagnostics
TYPE ST_EcDevice :
STRUCT
nDeviceState: BYTE; //EtherCAT state machine state number, 8 is OP is good
sDeviceState :STRING; //EtherCAT state machine state, OP is good
nLinkState: BYTE; //EtherCAT link state, 8 is good
nAddrr: WORD; //EtherCAT slave address
sType: STRING; //EtherCAT slave type
sName:STRING; //EtherCAT slave name
END_STRUCT
END_TYPE
ST_EcMasterDevState
TYPE ST_EcMasterDevState :
STRUCT
eEcState : E_EcCommState;
nReserved : ARRAY [0..2] OF UINT;
bLinkError : BOOL;
bResetRequired : BOOL;
bMissFrmRedMode : BOOL;
bWatchdogTriggerd : BOOL;
bDriverNotFound : BOOL;
bResetActive : BOOL;
bAtLeastOneNotInOp : BOOL;
bDcNotInSync : BOOL;
END_STRUCT
END_TYPE
- Related:
ST_EpicsMotorMSTA
TYPE ST_EpicsMotorMSTA :
STRUCT
(* DIRECTION: last raw direction; (0:Negative, 1:Positive) *)
bPositiveDirection : BIT;
(* DONE: motion is complete. *)
bDone : BIT;
(* PLUS_LS: plus limit switch has been hit. *)
bPlusLimitSwitch : BIT;
(* HOMELS: state of the home limit switch. *)
bHomeLimitSwitch : BIT;
(* Unused *)
bUnused0 : BIT;
(* POSITION: closed-loop position control is enabled. *)
bClosedLoop : BIT;
(* SLIP_STALL: Slip/Stall detected (eg. fatal following error) *)
bSlipStall : BIT;
(* HOME: if at home position. *)
bHome : BIT;
(* PRESENT: encoder is present. *)
bEncoderPresent : BIT;
(* PROBLEM: driver stopped polling, or hardware problem *)
bHardwareProblem : BIT;
(* MOVING: non-zero velocity present. *)
bMoving : BIT;
(* GAIN_SUPPORT: motor supports closed-loop position control. *)
bGainSupport : BIT;
(* COMM_ERR: Controller communication error. *)
bCommError : BIT;
(* MINUS_LS: minus limit switch has been hit. *)
bMinusLimitSwitch : BIT;
(* HOMED: the motor has been homed. *)
bHomed : BIT;
END_STRUCT
END_TYPE
ST_FbDiagnostics
//Stuff to log messages within function blocks
TYPE ST_FbDiagnostics :
STRUCT
asResults : ARRAY [1..20] OF T_MaxString; //Diagnostic messages, use to record state changes or other important events.
{attribute 'naming' := 'omit'}
//Incrementer, included here to facilitate using asResults
resultIdx : FB_Index := (
LowerLimit := 1,
UpperLimit := 20
);
{attribute 'naming' := 'omit'}
fString : FB_FormatString; //Use to create good log messages, similar to C++ fstring
END_STRUCT
END_TYPE
- Related:
ST_LoggingEventInfo_WC
TYPE ST_LoggingEventInfo_WC :
STRUCT
(*
Message or Alarm{Cleared,Confirmed,Raised} event information
** Working copy - to be used for the pinned ST_LoggingEventInfo **
* The process for updating this type is as follows:
1. Copy this structure and rename to ST_LoggingEventInfo
2. Remove the working copy notes section
3. Pin the global data type
** End of working copy information **
Note that elements here do not follow the usual Hungarian notation /
variable-type-prefixing naming convention due to the member names being
used directly in the generation of the JSON document.
*)
{attribute 'pytmc' := '
pv: Schema
io: i
field: DESC Schema string
'}
schema : STRING := 'twincat-event-0';
{attribute 'pytmc' := '
pv: Timestamp
io: i
field: DESC Unix timestamp
'}
ts : LREAL;
{attribute 'pytmc' := '
pv: Hostname
io: i
field: DESC PLC Hostname
'}
plc : STRING;
{attribute 'pytmc' := '
pv: Severity
io: i
field: DESC TcEventSeverity
field: ZRST Verbose
field: ONST Info
field: TWST Warning
field: THST Error
'}
severity : TcEventSeverity;
{attribute 'pytmc' := '
pv: MessageID
io: i
field: DESC TwinCAT Message ID
'}
id : UDINT;
{attribute 'pytmc' := '
pv: EventClass
io: i
field: DESC TwinCAT Event class
'}
event_class : STRING;
{attribute 'pytmc' := '
pv: Message
io: i
'}
msg : STRING(255);
// This is actually: T_MaxString
// which has been expanded due to requirements for pinning global data types.
{attribute 'pytmc' := '
pv: Source
io: i
'}
source : STRING(255);
// This is actually: STRING(Tc3_EventLogger.ParameterList.cSourceNameSize - 1)
// which has been expanded due to requirements for pinning global data types.
{attribute 'pytmc' := '
pv: EventType
io: i
field: DESC The event type
'}
event_type : E_LogEventType;
{attribute 'pytmc' := '
pv: MessageJSON
io: i
field: DESC Metadata with the message
'}
json : STRING(10000);
(*
NOTE: this JSON gets inserted as an escaped string in the "json" key.
TODO: it may be possible to use `fbJson.AddRawObject`, but this would
require us to switch back to creating the JSON in a more manual
way with AddKey/AddInt (and such).
*)
END_STRUCT
END_TYPE
ST_PendingEvent
TYPE ST_PendingEvent :
STRUCT
{attribute 'pytmc' := '
pv:
'}
stEventInfo : ST_LoggingEventInfo;
bInUse : BOOL;
fbRequestEventText : FB_RequestEventText;
END_STRUCT
END_TYPE
ST_SlaveState
TYPE ST_SlaveState :
STRUCT
(* slave state *)
eEcState : E_EcCommState;
nReserved : UINT;
bError : BOOL;
bInvalidVPRS : BOOL;
nReserved2 : UINT;
(* link state *)
bNoCommToSlave : BOOL;
bLinkError : BOOL;
bMissingLink : BOOL;
bUnexpectedLink : BOOL;
bPortA : BOOL;
bPortB : BOOL;
bPortC : BOOL;
bPortD : BOOL;
END_STRUCT
END_TYPE
- Related:
ST_SlaveStateInfo
TYPE ST_SlaveStateInfo :
STRUCT
nIndex : DINT;
sName : STRING; (* name of slave given in System Manager *)
sType : STRING; (* type of slave, e.g. EK1100*)
nECAddr : UINT; (* EtherCAT Slave Addr *)
bDiagData : BOOL; (* DiagData in Slave State *)
stPortCRCErrors : ST_EcCrcErrorEx;(* Slave CRC-Errors, separate for each Port *)
nSumCRCErrors : UDINT; (* Slave CRC-Errors, sum of all Ports *)
stState : ST_SlaveState;(* EtherCAT State and Link state*)
END_STRUCT
END_TYPE
- Related:
ST_SlaveStateInfoScanned
TYPE ST_SlaveStateInfoScanned :
STRUCT
nIndex : DINT;
sName : STRING; (* name of slave given in System Manager *)
sType : STRING; (* type of slave, e.g. EK1100*)
nECAddr : UINT; (* EtherCAT Slave Addr *)
bDifferentName : BOOL; (* Name of Scanned configuration differs from Configured configuration *)
bDifferentType : BOOL; (* Type Of Scanned configuration differs from Configured configuration *)
bDifferentAddr : BOOL; (* EcAddress of Scanned configuration differs from Configured configuration *)
END_STRUCT
END_TYPE
ST_System
//Defacto system structure, must be included in all projects
{attribute 'analysis' := '-33'}
TYPE ST_System :
STRUCT
xSwAlmRst : BOOL;(* Global Alarm Reset - EPICS Command *)
xAtVacuum : BOOL;(* System At Vacuum *)
xFirstScan : BOOL; (* This boolean is true for the first scan, and is false thereafter, use for initialization of stuff *)
xOverrideMode : BOOL; //This bit is set when using the override features of the system
xIOState : BOOL; (* ECat Bus Health *)
END_STRUCT
END_TYPE
ST_TopologyData
TYPE ST_TopologyData :
STRUCT
iOwnPhysicalAddr : UINT;
iOwnAutoIncAddr : UINT;
stPhysicalAddr : ST_PortAddr;
stAutoIncAddr : ST_PortAddr;
iPortDelay : ARRAY [0..2] OF UDINT; (* EC_AD, EC_DB, EC_BC *)
iReserved : ARRAY [0..7] OF UDINT;
END_STRUCT
END_TYPE
GVLs
DefaultGlobals
//These are variables every PLC project should have
{attribute 'analysis' := '-33'}
VAR_GLOBAL
stSys : ST_System; //Included for you
fTimeStamp: LREAL;
END_VAR
- Related:
GeneralConstants
{attribute 'qualified_only'}
{attribute 'analysis' := '-33'}
VAR_GLOBAL CONSTANT
// 16 including "Unknown" is the max for an EPICS MBBI/MBBO
// This is the max number of user-defined states (OUT, TARGET1, YAG...)
// You can make this smaller if you want to use less memory in your program in exchange for limiting your max state count
// You can make this larger if you want to use states-based FBs sized beyond the EPICS enum limit
MAX_STATES: UINT := 15;
END_VAR
Global_Variables_EtherCAT
{attribute 'analysis' := '-33'}
VAR_GLOBAL CONSTANT
iSLAVEADDR_ARR_SIZE : UINT := 256;
ESC_MAX_PORTS : UINT := 3; // Maximum number of ports (4) on ESC
END_VAR
GVL_Logger
{attribute 'qualified only'}
//Global variables for logging to syslog
VAR_GLOBAL CONSTANT
(*
Using the IP address directly avoids DNS configuration issues.
While we may want to address this in the future, for now the static IP
will suffice:
$ nslookup ctl-logsrv01
Name: ctl-logsrv01.pcdsn
Address: 172.21.32.36
*)
{attribute 'pytmc' := '
pv: @(PREFIX)LCLSGeneral:LogHost
io: io
field: DESC The log host IP address
'}
cLogHost : STRING(15) := '172.21.32.36';
{attribute 'pytmc' := '
pv: @(PREFIX)LCLSGeneral:LogPort
io: io
field: DESC The log host UDP port
'}
iLogPort : UINT := 54321;
sIpTidbit : STRING(6) := '172.21';
// Log message circuit breaker configuration
// Initialization constants for circuit breakers
nLocalTripThreshold : TIME := T#1ms; // Minimum time between log messages
nMinTimeViolationAcceptable : INT := 5; // Trip if `nLocalTripThreshold` exceeded `nMinTimeViolationAcceptable` times
nLocalTrickleTripThreshold : TIME := T#100ms; // Default trickle trip, activated by global threshold
nTrickleTripTime : TIME := T#10s; // Default time for log-handler to recognize a trickle overload condition, many log-message FB occasionally creating a message
// such that every PLC cycle is emitting a message (this is considered to be too much).
nTripResetPeriod : TIME := T#10m; // Default time for CB auto-reset
END_VAR
VAR_GLOBAL
sPlcHostname : STRING := 'unknown';
(* Ref: https://infosys.beckhoff.com/english.php?content=../content/1033/tcpipserver/html/TcPlcLibTcpIp_FB_SocketUdpSendTo.htm
TODO: Activate the "Replace constants" option in the
TwinCAT PLC Control->"Project->Options...->Build" dialog window.
*)
{attribute 'analysis' := '-33'}
TCPADS_MAXUDP_BUFFSIZE : UDINT :=10000;
{analysis -33}
fbRootLogger : FB_LogMessage; //Instantiated here to be used everywhere
{analysis +33}
{attribute 'pytmc' := '
pv: @(PREFIX)LCLSGeneral:GlobalLogTrickleTrip
io: i
field: DESC Tripped by overall log count
'}
bTrickleTripped : BOOL; // Global trickle trip flag
{attribute 'pytmc' := '
pv: @(PREFIX)LCLSGeneral:LogMessageCount
io: i
field: DESC Total log messages on the last cycle
'}
nGlobAccEvents : UDINT; // Global log message count
END_VAR
- Related:
POUs
F_ConvertTicksToUnixTimestamp
FUNCTION F_ConvertTicksToUnixTimestamp : LREAL
VAR_INPUT
nTimestamp : ULINT;
END_VAR
VAR CONSTANT
// Timer ticks in Windows are 100ns (1e-7 sec)
nTicksToSeconds : LREAL := 10_000_000;
// Epoch offset 1601 to 1970
nEpochOffset : LREAL := 11_644_473_600;
END_VAR
F_ConvertTicksToUnixTimestamp := ULINT_TO_LREAL(nTimestamp) / nTicksToSeconds - nEpochOffset;
END_FUNCTION
F_SendUDPMessage
FUNCTION F_SendUDPMessage : HRESULT
VAR_INPUT
sMessage : POINTER TO STRING;
fbSocket : REFERENCE TO FB_ConnectionlessSocket;
sHost : STRING;
iPort : UINT;
END_VAR
VAR
fbSend : FB_SocketUdpSendTo;
END_VAR
IF sMessage <> 0 AND __ISVALIDREF(fbSocket) THEN
fbSend.hSocket := fbSocket.hSocket;
fbSend.sRemoteHost := sHost;
fbSend.nRemotePort := iPort;
fbSend.pSrc := sMessage;
fbSend.cbLen := LEN2(sMessage);
fbSend.bExecute := TRUE;
fbSend();
fbSend.bExecute R= fbSend.bBusy;
END_IF
END_FUNCTION
FB_AnalogInput
FUNCTION_BLOCK FB_AnalogInput
(*
Converts the integer from an analog input terminal to a real unit value (e.g., volts)
2019-10-09 Zachary Lentz
*)
VAR_INPUT
// Connect this input to the terminal
iRaw AT %I*: DINT;
// The number of bits correlated with the terminal's max value. This is not necessarily the resolution parameter.
iTermBits: UINT;
// The fReal value correlated with the terminal's max value
fTermMax: LREAL;
// The fReal value correlated with the terminal's min value
fTermMin: LREAL;
// Value to scale the end result to
{attribute 'pytmc' := '
pv: RES
io: io
'}
fResolution : LREAL := 1;
{attribute 'pytmc' := '
pv: OFF
io: io
'}
fOffset : LREAL;
END_VAR
VAR_OUTPUT
// The real value read from the output
{attribute 'pytmc' := '
pv: VAL
io: i
'}
fReal: LREAL;
END_VAR
VAR
fScale: LREAL;
END_VAR
IF fScale = 0 AND fTermMax > fTermMin THEN
fScale := (EXPT(2, iTermBits) - 1) / (fTermMax - fTermMin);
END_IF
IF fScale <> 0 THEN
fReal := iRaw / fScale + fTermMin;
fReal := fReal * fResolution + fOffset;
END_IF
END_FUNCTION_BLOCK
FB_AnalogOutput
FUNCTION_BLOCK FB_AnalogOutput
(*
Converts a real unit value (e.g., volts) to the integer needed for an analog output terminal.
2019-10-09 Zachary Lentz
*)
VAR_INPUT
// The real value to send to the output
fReal: LREAL;
// The maximum allowed real value for the connected hardware
fSafeMax: LREAL;
// The minimum allowed real value for the connected hardware
fSafeMin: LREAL;
// The number of bits correlated with the terminal's max output. This is not necessarily the resolution parameter.
iTermBits: UINT;
// The fReal value correlated with the terminal's max output
fTermMax: LREAL;
// The fReal value correlated with the terminal's min output
fTermMin: LREAL;
END_VAR
VAR_OUTPUT
// Connect this output to the terminal
iRaw AT %Q*: INT;
END_VAR
VAR
fScale: LREAL;
END_VAR
// Set the scaling from real to raw
IF fScale = 0 AND fTermMax > fTermMin THEN
fScale := (EXPT(2, iTermBits) - 1) / (fTermMax - fTermMin);
END_IF
// Adjust real value to be within the limits
fReal := MIN(fReal, fSafeMax, fTermMax);
fReal := MAX(fReal, fSafeMin, fTermMin);
// Scale the output accordingly
iRaw := LREAL_TO_INT((fReal - fTermMin) * fScale);
END_FUNCTION_BLOCK
FB_BasicStats
FUNCTION_BLOCK FB_BasicStats
(*
Minimalist Array Stats for LREALs
2019-10-10 Zachary Lentz
Calculates the most basic stats for an array and provides pytmc control points.
This is an alternative to the TC3 Condition Monitoring library which requires an
additional license and had a more complicated interface.
*)
VAR_IN_OUT
// Input array of floats
{attribute 'pytmc' := '
pv: STATS:DATA
io: i
'}
aSignal: ARRAY[*] OF LREAL;
END_VAR
VAR_INPUT
// If TRUE, we will update the results every cycle
{attribute 'pytmc' := 'pv: STATS:ALWAYS_CALC'}
bAlwaysCalc: BOOL;
// On rising edge, do one calculation
{attribute 'pytmc' := 'pv: STATS:EXECUTE'}
bExecute: BOOL;
// If set to TRUE, reset outputs
{attribute 'pytmc' := 'pv: STATS:RESET'}
bReset: BOOL;
// If nonzero, we will only pay attention to the first nElems items in aSignal
{attribute 'pytmc' := '
pv: STATS:NELM
io: i
'}
nElems: UDINT;
END_VAR
VAR_OUTPUT
// Average of all values in the array
{attribute 'pytmc' := '
pv: STATS:MEAN
io: i
'}
fMean: LREAL;
// Standard deviation of all values in the array
{attribute 'pytmc' := '
pv: STATS:STDEV
io: i
'}
fStDev: LREAL;
// Largest value in the array
{attribute 'pytmc' := '
pv: STATS:MAX
io: i
'}
fMax: LREAL;
// Smallest value in the array
{attribute 'pytmc' := '
pv: STATS:MIN
io: i
'}
fMin: LREAL;
// Largest array element subtracted by the smallest
{attribute 'pytmc' := '
pv: STATS:RANGE
io: i
'}
fRange: LREAL;
// RMS of all values in the array
{attribute 'pytmc' := '
pv: STATS:RMS
io: i
'}
fRMS: LREAL;
// True if the other outputs are valid
{attribute 'pytmc' := '
pv: STATS:VALID
io: i
'}
bValid: BOOL;
END_VAR
VAR
rTrig: R_TRIG;
nIndex: DINT;
nElemsSeen: UDINT;
fSum: LREAL;
fRMSSum: LREAL;
fVarianceSum: LREAL;
fVarianceMean: LREAL;
END_VAR
rTrig(CLK:=bExecute);
IF bReset THEN
fMean := 0;
fStDev := 0;
fMax := 0;
fMin := 0;
fRange := 0;
fRMS := 0;
bValid := FALSE;
bReset := FALSE;
ELSIF NOT (bExecute OR bAlwaysCalc) THEN
bValid := FALSE;
ELSIF bAlwaysCalc OR rTrig.Q THEN
// First pass through aSignal: get sum, mean, max, min, rms
nElemsSeen := 0;
fSum := 0;
fRMSSum := 0;
fMax := aSignal[LOWER_BOUND(aSignal, 1)];
fMin := fMax;
FOR nIndex := LOWER_BOUND(aSignal, 1) TO UPPER_BOUND(aSignal, 1) DO
nElemsSeen := nElemsSeen + 1;
fSum := fSum + aSignal[nIndex];
fRMSSum := fRMSSum + EXPT(aSignal[nIndex], 2);
IF aSignal[nIndex] > fMax THEN
fMax := aSignal[nIndex];
ELSIF aSignal[nIndex] < fMin tHEN
fMin := aSignal[nIndex];
END_IF
IF nElems > 0 AND nElemsSeen >= nElems THEN
EXIT;
END_IF
END_FOR
IF nElemsSeen > 0 THEN
fMean := fSum / nElemsSeen;
fRange := fMax - fMin;
fRMS := SQRT(fRMSSum / nElemsSeen);
// Second pass through aSignal: get the sum of the variances and then the stdev
nElemsSeen := 0;
fVarianceSum := 0;
FOR nIndex := LOWER_BOUND(aSignal, 1) TO UPPER_BOUND(aSignal, 1) DO
nElemsSeen := nElemsSeen + 1;
fVarianceSum := fVarianceSum + (aSignal[nIndex] - fMean) * (aSignal[nIndex] - fMean);
IF nElems > 0 AND nElemsSeen >= nElems THEN
EXIT;
END_IF
END_FOR
IF nElemsSeen > 1 THEN
fVarianceMean := fVarianceSum / (nElemsSeen - 1);
fStDev := SQRT(fVarianceMean);
bValid := TRUE;
END_IF
END_IF
END_IF
END_FUNCTION_BLOCK
FB_CircuitBreaker_Test
{attribute 'call_after_init'}
FUNCTION_BLOCK FB_CircuitBreaker_Test EXTENDS TcUnit.FB_TestSuite
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
END_VAR
AutoReset();
SingleBadLogger();
DeathByManySmall();
END_FUNCTION_BLOCK
METHOD AutoReset
VAR_INPUT
END_VAR
VAR_INST
fbLog : FB_LogMessage := (
bEnableAutoReset:=TRUE,
nTripResetPeriod := T#5s);
//Auto reset test
tonAutoResetTest : TON;
{attribute 'analysis' := '-27'}
Init : BOOL := TRUE;
END_VAR
(* Test that the CB resets itself after a cooldown period *)
TEST('AutoReset');
IF Init THEN
fbLog.CircuitBreaker();
WRITE_PROTECTED_BOOL(ADR(fbLog.bTripped), TRUE);
WRITE_PROTECTED_BOOL(ADR(fbLog.bLocalTripped), TRUE);
fbLog.CircuitBreaker();
fbLog.CircuitBreaker();
Init := FALSE;
END_IF
tonAutoResetTest(IN:=NOT Init, PT:=T#6s);
IF tonAutoResetTest.Q THEN
fbLog.CircuitBreaker();
AssertFalse(fbLog.bTripped,
'Circuit breaker should be reset automatically');
TEST_FINISHED_NAMED('AutoReset');
END_IF
END_METHOD
METHOD DeathByManySmall
VAR_INPUT
END_VAR
VAR
END_VAR
VAR_INST
fbLogNoisy : FB_LogMessage;
tNoisy : TON := (PT:=T#50ms); //50ms is > the local trip threshold default of 1ms
fbLogNice : FB_LogMessage := (nTrickleTripThreshold:=T#2s);
tNice : TON := (PT:=T#5s);
tTrickle : TON := (PT:= GVL_Logger.nTrickleTripTime + T#1s);
fbLogHandler : FB_LogHandler;
END_VAR
TEST('ManySmall');
// Create a condition where
// a few loggers did their thing, while keeping under the
// local logging rate limit until the global trickle trip
// was triggered. Then verify only those loggers that
// were just a little too noisy, would trip off, while others stayed up.
fbLogHandler.CircuitBreaker();
// Call this guy every 50ms or so.
tNoisy(IN := NOT tNoisy.Q);
IF tNoisy.Q THEN
fbLogNoisy.CircuitBreaker();
END_IF
// Call this guy every 5s or so
tNice(IN := NOT tNoisy.Q);
IF tNice.Q THEN
fbLogNice.CircuitBreaker();
END_IF
tTrickle(IN:=TRUE);
IF tTrickle.Q THEN
AssertTrue(fbLogNoisy.bLocalTrickleTripped AND NOT fbLogNice.bLocalTrickleTripped,
'Only Noisy should be tripped.');
TEST_FINISHED_NAMED('ManySmall');
END_IF
END_METHOD
METHOD SingleBadLogger
VAR_INPUT
END_VAR
VAR
idx : UINT;
END_VAR
VAR_INST
fbLog : FB_LogMessage := (
bEnableAutoReset:=TRUE,
nTripResetPeriod := T#5s);
END_VAR
ResetCircuitBreakerGlobals();
(* In this scenario, a logger trips off because it has been called too many times
in one cycle, leading to a large excess of messages.
*)
TEST('LocalFastTrip');
FOR idx := 0 TO GVL_LOGGER.nMinTimeViolationAcceptable + 1 DO
fbLog.CircuitBreaker();
END_FOR
AssertTrue(fbLog.bLocalTripped AND NOT fbLog.bLocalTrickleTripped,
'Only local trip should occur in these conditions');
TEST_FINISHED();
END_METHOD
FB_CoE_FastRead
FUNCTION_BLOCK FB_CoE_FastRead
(*
Utility to repeatedly read a CoE parameter
2019-10-09 Zachary Lentz
In practice, it's impossible to read most CoE parameters every cycle,
but this is a best effort and will work if the data is available
*)
VAR_INPUT
// If TRUE we'll attempt a CoE read this cycle.
bExecute: BOOL;
// Link this to your terminal's drive reference variables under InfoData.
stPlcDriveRef AT %I*: ST_PlcDriveRef;
// Hexadecimal index of CoE, e.g. the 8010 in 8010:12
nIndex: UINT;
// Hexadecimal subindex of CoE, e.g. the 12 in 8010:12
nSubIndex: BYTE;
// Pointer to a value to fill with the result of the read, e.g. ADR(MyValue)
pDstBuf: PVOID;
// Data size of pDstBuf, e.g. SIZEOF(MyValue)
cbBufLen: UINT;
END_VAR
VAR_OUTPUT
// TRUE if the value was updated on this cycle.
bNewValue: BOOL;
END_VAR
VAR
fbRead: FB_CoERead_ByDriveRef;
stDriveRef: ST_DriveRef;
iLoop: INT;
bInnerExec: BOOL;
END_VAR
stDriveRef.sNetId := F_CreateAmsNetId(stPlcDriveRef.aNetId);
stDriveRef.nSlaveAddr := stPlcDriveRef.nSlaveAddr;
stDriveRef.nDriveNo := stPlcDriveRef.nDriveNo;
stDriveRef.nDriveType := stPlcDriveRef.nDriveType;
bNewValue := FALSE;
IF bExecute THEN
// You need to do this block 3 times per cycle to have a chance at always getting a read
FOR iLoop:= 1 TO 3 DO
fbRead(
stDriveRef := stDriveRef,
nIndex := nIndex,
nSubIndex := nSubIndex,
pDstBuf := pDstBuf,
cbBufLen := cbBufLen,
bExecute := bInnerExec,
tTimeout := T#1s);
IF bInnerExec AND NOT fbRead.bBusy AND NOT fbRead.bError THEN
bInnerExec := FALSE;
bNewValue := TRUE;
ELSE
bInnerExec := TRUE;
END_IF
END_FOR
END_IF
END_FUNCTION_BLOCK
FB_DataBuffer
FUNCTION_BLOCK FB_DataBuffer
(*
Function Block to accumulate data into an array.
2019-10-09 Zachary Lentz
Requires the user to supply pointers to the value and to 2 arrays:
1. A partial buffer that we will slowly fill one value at a time
2. An output buffer that will only update when the partial buffer is full
Take great care of the following, or else your program will likely crash,
or at least have corrupt data:
1. The input type and array types must match
2. The provided element count must be accurate and match both arrays
3. The provided element size is correct
As this function block as no way of checking that you did this correctly.
*)
VAR_INPUT
// Whether or not to accumulate on this cycle
bExecute: BOOL;
// Address of the value to accumulate
pInputAdr: PVOID;
// Size of the accumulated value
iInputSize: UDINT;
// Number of values in the output array
iElemCount: UDINT;
// Address of the rolling buffer to be filled every cycle
pPartialAdr: PVOID;
// Address of the output buffer to be filled when the rolling buffer is full
pOutputAdr: PVOID;
END_VAR
VAR_OUTPUT
// Set to TRUE on the cycle that we copy the output array
bNewArray: BOOL;
END_VAR
VAR
iArrayIndex: UDINT := 0;
END_VAR
bNewArray := FALSE;
IF bExecute THEN
MEMCPY(
destAddr := pPartialAdr + iArrayIndex*iInputSize,
srcAddr := pInputAdr,
n := iInputSize);
iArrayIndex := iArrayIndex + 1;
IF iArrayIndex >= iElemCount THEN
MEMCPY(
destAddr := pOutputAdr,
srcAddr := pPartialAdr,
n := iElemCount*iInputSize);
iArrayIndex := 0;
bNewArray := TRUE;
END_IF
END_IF
END_FUNCTION_BLOCK
FB_ECATAutoRestart
FUNCTION_BLOCK FB_ECATAutoRestart
VAR_INPUT
sNetId : T_AmsNetId;
nSlaveAddr : UINT;
bEnable : BOOL;
nMaxErrorCount : INT := 5; // Stop Trying to Change state after this many tries
END_VAR
VAR_IN_OUT
END_VAR
VAR_OUTPUT
bError : BOOL;
nErrorId : UDINT;
END_VAR
VAR
nStateMachineState : INT := 1;
nErrorCount : INT := 0;
bStopTrying : BOOL;
fbgetSlaveState : FB_EcGetSlaveState;
fbsetSlaveState : FB_EcSetSlaveState;
fbLogger : FB_LogMessage := (eSubsystem:= E_Subsystem.FIELDBUS);
bLog : BOOL;
sLogMessage : T_MaxString;
END_VAR
StateMachine(bEnable:=bEnable,
bfbGetBusy := fbgetSlaveState.bBusy,
bfbGetUpdatedState => fbgetSlaveState.bExecute,
bfbGetError := fbgetSlaveState.bError,
nCurretState := fbgetSlaveState.state.deviceState,
nNextState => fbsetSlaveState.reqState,
sLogMessage=> sLogMessage,
bLog=> bLog,
bSetNextState=> fbsetSlaveState.bExecute,
bfbSetBusy := fbsetSlaveState.bBusy,
bfbSetError := fbsetSlaveState.bError,
bError => bError);
fbgetSlaveState(sNetId:= sNetId, nSlaveAddr:= nSlaveAddr);
fbsetSlaveState(sNetId:=sNetId, nSlaveAddr:=nSlaveAddr, tTimeout:=T#5s);
IF bLog THEN
fbLogger(sMsg:=sLogMessage, eSevr:=TcEventSeverity.Info);
END_IF
IF bError OR bStopTrying THEN
bError := TRUE;
IF fbgetSlaveState.bError OR bStopTrying THEN
nErrorId := fbgetSlaveState.nErrId;
ELSIF fbsetSlaveState.bError OR bStopTrying THEN
nErrorId := fbsetSlaveState.nErrId;
END_IF
ELSE
bError := FALSE;
nErrorId := 0 ;
END_IF
END_FUNCTION_BLOCK
METHOD StateMachine
VAR_INPUT
bEnable : BOOL;
nCurretState : WORD;
bfbGetBusy : BOOL;
bfbGetError : BOOL;
bfbSetBusy : BOOL;
bfbSetError : BOOL;
END_VAR
VAR_OUTPUT
bfbGetUpdatedState : BOOL;
bSetNextState : BOOL;
nNextState : WORD;
sLogMessage : T_MaxString;
bLog : BOOL;
bError : BOOL;
END_VAR
CASE nStateMachineState OF
0 :
nErrorCount := 0;
bStopTrying := FALSE;
IF bEnable THEN
nStateMachineState := 1;
END_IF
1 : // Monitor State
IF NOT bEnable THEN
nStateMachineState := 0;
END_IF
// Get Updated terminal State
IF NOT bfbGetBusy THEN
bfbGetUpdatedState := TRUE;
ELSE
bfbGetUpdatedState := FALSE;
END_IF
IF bfbGetError THEN
bError := TRUE;
nStateMachineState := 3;
ELSE
// Only Try to Update when We have good state reading.
// If not in OP try to Move into Another State
IF nCurretState <> EC_DEVICE_STATE_OP AND bEnable AND NOT bStopTrying AND NOT bfbGetError THEN
nStateMachineState := 2;
END_IF
IF nCurretState = EC_DEVICE_STATE_OP AND NOT bfbGetError THEN
// WE ARE IN OP
nNextState := nCurretState;
nErrorCount := 0;
bStopTrying := FALSE;
bError := FALSE;
END_IF
END_IF
2 : // FIND NEXT STATE AND SIGNAL TO MOVE
CASE nCurretState OF
EC_DEVICE_STATE_BOOTSTRAP:
nNextState := EC_DEVICE_STATE_INIT;
sLogMessage := 'TRYING TO GO FROM BOOTSTRAP TO INIT';
bLog := TRUE;
EC_DEVICE_STATE_INIT:
nNextState := EC_DEVICE_STATE_PREOP;
sLogMessage := 'TRYING TO GO FROM INIT TO PREOP';
bLog := TRUE;
EC_DEVICE_STATE_PREOP:
nNextState := EC_DEVICE_STATE_SAFEOP;
sLogMessage := 'TRYING TO GO FROM PREOP TO SAFEOP';
bLog := TRUE;
EC_DEVICE_STATE_SAFEOP:
nNextState := EC_DEVICE_STATE_OP;
sLogMessage := 'TRYING TO GO FROM SAFEOP TO OP';
bLog := TRUE;
END_CASE
nStateMachineState := 3;
// Signal to try to move to next State
bSetNextState := TRUE;
3 : // Wait to Finish Trying to Move to Next State
IF bfbSetError OR bfbGetError THEN
bError := TRUE;
nErrorCount := nErrorCount + 1;
IF nErrorCount = nMaxErrorCount THEN
bStopTrying := TRUE;
END_IF
END_IF
IF NOT bfbSetBusy THEN
bSetNextState := FALSE;
nStateMachineState := 1;
END_IF
END_CASE
END_METHOD
- Related:
FB_ECATAutoRestart_Test
FUNCTION_BLOCK FB_ECATAutoRestart_Test EXTENDS TcUnit.FB_TestSuite
VAR
fbECATAutoRestart : FB_ECATAutoRestart;
fbTON_TestTimer : TON;
bStartTest : BOOL := FALSE;
END_VAR
TestSingleLogPerTransitionExpect4Logs();
TestAnyStateExpectChangeToOpStateInSeq();
TestNotEnabledExpectNoStateChange();
Test5RetriesExpectErrorStopTrying();
TestBadAddressExpectError();
END_FUNCTION_BLOCK
METHOD Test5RetriesExpectErrorStopTrying
VAR_INPUT
END_VAR
VAR
nIndex : INT;
nStateMachineState : INT;
// State Machine Control Inputs
bEnable : BOOL;
bfbGetBusy : BOOL;
bfbGetError : BOOL;
nCurretState : WORD;
bfbSetBusy : BOOL;
bfbSetError : BOOL;
// State Machine Control Outputs
bfbGetUpdatedState : BOOL;
bSetNextState : BOOL;
nNextState : WORD;
sLogMessage : T_MaxString;
bLog : BOOL;
END_VAR
TEST('Test5RetriesExpectErrorStopTrying');
nStateMachineState := 1; // Start Test on Start State
bEnable := TRUE;
bfbGetBusy := FALSE;
bfbGetError := FALSE;
nCurretState := EC_DEVICE_STATE_PREOP;
bfbSetBusy := FALSE;
bfbSetError := TRUE;
FOR nIndex := 1 TO 20 DO
fbECATAutoRestart.StateMachine(bEnable:=bEnable,
bfbGetBusy := bfbGetBusy,
bfbGetError := bfbGetError,
bfbGetUpdatedState => bfbGetUpdatedState,
nCurretState := nCurretState,
nNextState => nNextState,
sLogMessage=> sLogMessage,
bLog=> bLog,
bSetNextState=> bSetNextState,
bfbSetBusy := bfbSetBusy,
bfbSetError := bfbSetError);
END_FOR
AssertEquals_BOOL(Expected:=TRUE,
Actual:= fbECATAutoRestart.bStopTrying,
Message:='bStopTrying was not set after trying to get new position after 20 Cycles');
// CLEAR ANY ERRORS AFTER TESTS
FOR nIndex := 1 TO 3 DO
fbECATAutoRestart.StateMachine(bEnable:=FALSE,
bfbGetBusy := bfbGetBusy,
bfbGetError := bfbGetError,
bfbGetUpdatedState => bfbGetUpdatedState,
nCurretState := nCurretState,
nNextState => nNextState,
sLogMessage=> sLogMessage,
bLog=> bLog,
bSetNextState=> bSetNextState,
bfbSetBusy := bfbSetBusy,
bfbSetError := bfbSetError);
END_FOR
TEST_FINISHED();
END_METHOD
METHOD TestAnyStateExpectChangeToOpStateInSeq
VAR_INPUT
END_VAR
VAR
// State Machine Control Inputs
bEnable : BOOL;
bfbGetBusy : BOOL;
bfbGetError : BOOL;
nCurretState : WORD;
bfbSetBusy : BOOL;
bfbSetError : BOOL;
// State Machine Control Outputs
bfbGetUpdatedState : BOOL;
bSetNextState : BOOL;
nNextState : WORD;
sLogMessage : T_MaxString;
bLog : BOOL;
// TestAnyStateChangeOpInSeq Vars
nIndex : INT := 1;
aPossibleStart : ARRAY [1 .. 4] OF BYTE := [EC_DEVICE_STATE_BOOTSTRAP,
EC_DEVICE_STATE_INIT,
EC_DEVICE_STATE_PREOP,
EC_DEVICE_STATE_SAFEOP];
nStartIndex : INT := 0;
END_VAR
TEST('TestAnyStateExpectChangeToOpStateInSeq');
bEnable := TRUE;
bfbGetBusy := FALSE;
bfbSetBusy := FALSE;
bfbSetError := FALSE;
bfbGetError := FALSE;
FOR nStartIndex := 1 TO 4 DO
nCurretState := aPossibleStart[nStartIndex];
// Takes 3 cycles for statemachine to update state
// 4 - nStartIndex is number of steps needed to return to OP
FOR nIndex := 1 TO 3 * 4 - nStartIndex DO
fbECATAutoRestart.StateMachine
(bEnable:=bEnable,
bfbGetBusy := bfbGetBusy,
bfbGetError := bfbGetError,
bfbGetUpdatedState => bfbGetUpdatedState,
nCurretState := nCurretState,
nNextState => nNextState,
sLogMessage=> sLogMessage,
bLog=> bLog,
bSetNextState=> bSetNextState,
bfbSetBusy := bfbSetBusy,
bfbSetError := bfbSetError);
IF bSetNextState THEN
nCurretState := nNextState;
END_IF
END_FOR
AssertEquals_BYTE(Expected:=EC_DEVICE_STATE_OP,
Actual:= TO_BYTE(nCurretState),
Message:='Test Did not Return to OP');
END_FOR
TEST_FINISHED();
END_METHOD
METHOD TestBadAddressExpectError
VAR_INPUT
END_VAR
VAR
bError : BOOL;
bErrorId : UDINT;
nIndex : INT;
END_VAR
TEST('TestBadAddressExpectError');
FOR nIndex := 1 TO 6 DO
fbECATAutoRestart(sNetId:='1.0.0.0.1',
nSlaveAddr:=11101,
bEnable:= TRUE,
bError=>bError,
nErrorId=>bErrorId);
IF bError THEN
AssertEquals_BOOL(Expected:=TRUE,
Actual:=bError,
Message:= 'Expected bError to be TRUE');
AssertEquals_UDINT(Expected:= 7,
Actual:= bErrorId,
Message:= 'Expected ERR_TARGETMACHINENOTFOUND (0x7)');
END_IF
END_FOR
TEST_FINISHED();
END_METHOD
METHOD TestNotEnabledExpectNoStateChange
VAR_INPUT
END_VAR
VAR
nStateMachineStartState : INT;
// State Machine Control Inputs
bEnable : BOOL;
bfbGetBusy : BOOL;
bfbGetError : BOOL;
nCurretState : WORD;
bfbSetBusy : BOOL;
bfbSetError : BOOL;
// State Machine Control Outputs
bfbGetUpdatedState : BOOL;
bSetNextState : BOOL;
nNextState : WORD;
sLogMessage : T_MaxString;
bLog : BOOL;
END_VAR
TEST('TestNotEnabledExpectNoStateChange');
nStateMachineStartState := 1;
bEnable := FALSE;
bfbGetBusy := FALSE;
nCurretState := EC_DEVICE_STATE_PREOP;
bfbSetBusy := FALSE;
bfbSetError := TRUE;
bfbGetError := FALSE;
fbECATAutoRestart.StateMachine(bEnable:=bEnable,
bfbGetBusy := bfbGetBusy,
bfbGetError := bfbGetError,
bfbGetUpdatedState => bfbGetUpdatedState,
nCurretState := nCurretState,
nNextState => nNextState,
sLogMessage=> sLogMessage,
bLog=> bLog,
bSetNextState=> bSetNextState,
bfbSetBusy := bfbSetBusy,
bfbSetError := bfbSetError);
AssertEquals_WORD(Expected:= 0,
Actual:= nNextState,
Message:= 'When bEnable is False, nNextState should not return anything');
TEST_FINISHED();
END_METHOD
METHOD TestSingleLogPerTransitionExpect4Logs
VAR_INPUT
END_VAR
VAR
// State Machine Control Inputs
bEnable : BOOL;
bfbGetBusy : BOOL;
nCurretState : WORD;
bfbSetBusy : BOOL;
bfbSetError : BOOL;
bfbGetError : BOOL;
// State Machine Control Outputs
bfbGetUpdatedState : BOOL;
bSetNextState : BOOL;
nNextState : WORD;
sLogMessage : T_MaxString;
bLog : BOOL;
nIndex : INT := 1;
nLogCount : INT := 0;
END_VAR
TEST('TestSingleLogPerTransitionExpect4Logs');
fbTON_TestTimer(IN:=bStartTest,PT:=T#1s);
IF NOT bStartTest THEN bStartTest := TRUE; END_IF
bEnable := TRUE;
bfbGetBusy := FALSE;
bfbSetBusy := FALSE;
bfbSetError := FALSE;
bfbGetError := FALSE;
nCurretState := EC_DEVICE_STATE_INIT;
// Using More cyles then needed
FOR nIndex := 1 TO 3 * 4 DO
fbECATAutoRestart.StateMachine
(bEnable:=bEnable,
bfbGetBusy := bfbGetBusy,
bfbGetError := bfbGetError,
bfbGetUpdatedState => bfbGetUpdatedState,
nCurretState := nCurretState,
nNextState => nNextState,
sLogMessage=> sLogMessage,
bLog=> bLog,
bSetNextState=> bSetNextState,
bfbSetBusy := bfbSetBusy,
bfbSetError := bfbSetError);
IF bLog THEN
nLogCount := nLogCount + 1;
END_IF
END_FOR
AssertEquals_INT(Expected:= 4,
Actual:=nLogCount,
Message:='More than 4 Logs where Produced');
TEST_FINISHED();
END_METHOD
- Related:
FB_EcatDiag
(*
Ecat bus diagnostic tool
2015-11-4 Alex Wallace
This function block checks the states of all slaves on the ecat bus network,
it could be modified to export the states of the slaves on an individual basis,
but for now it sets the output boolean true if all slaves are OP and false otherwise.
To start the block provide a falling edge on the first pass boolean input.
2018-05-05 Margaret Ghaly
Function block has been modified to retrieve the Device State of the Ethercat Master.
It also exports the states and information of each individual configured Slave.
And saves them in the array q_aEcConfSlaveInfo.
*)
FUNCTION_BLOCK FB_EcatDiag
VAR_INPUT
{attribute 'naming' := 'omit'}
I_AMSNetId AT %I* : AMSNETID; //Link to the AMSNETID name in the ethercat master info.
i_xFirstPass: BOOL; //Hook to system first pass boolean for proper intialization (must be true for the first cycle of the PLC)
END_VAR
VAR_OUTPUT
q_xAllSlaveStatesGood: BOOL; // Set to True if all Slaves are in OP State
q_anTermStates: ARRAY[1..256] OF BYTE; //ECAT State of terminals in the bus
q_xMasterStateGood:BOOL; // Set to True if the Master Device State is OP
q_nMasterState: WORD; // The Device State of the Master
q_sMasterState:STRING; //State of the ECAT master
q_astEcConfSlaveInfo : ARRAY[1..256] OF ST_EcDevice; //State of all ECAT slaves in the bus
q_nSlaves: UINT; // the Number of the connected Slaves
END_VAR
VAR
sNetId: T_AmsNetId; //NetId string
astTermStates: ARRAY[1..256] OF ST_EcSlaveState; //ECAT Slave States Buffer
astEcConfSlaveInfo: ARRAY[1..256] OF ST_EcSlaveConfigData; //ECAT Slave Configs Buffer
fbGetAllSlaveStates: FB_EcGetAllSlaveStates; //Acquires the ECAT Slave States puts them into astTermStates
fbGetMasterState: FB_EcGetMasterState; //Acquires ECAT Master State
fbGetConfSlaves: FB_EcGetConfSlaves; //Acquires the ECAT slave configuration of the bus (how many, what kind, etc)
{attribute 'naming' := 'omit'}
ftReset: F_TRIG; //Reset trigger sensor
{attribute 'naming' := 'omit'}
ftMasterReset: F_TRIG; //Retrigger sensor for GetMasterState
nIterator: INT; //Generic iterator placeholder
END_VAR
//Create the net ID string
sNetId := F_CreateAmsNetId(I_AMSNetId);
//Query the state of all terminals, collect in astTermStates
ftReset(CLK:=fbGetAllSlaveStates.bBusy OR i_xFirstPass);
fbGetAllSlaveStates.bExecute := ftReset.Q;
fbGetAllSlaveStates(sNetId:=sNetId, pStateBuf := ADR(astTermStates), cbBufLen:=SIZEOF(astTermStates));
//Keep checking...
//Cycle through each entry in the array and check if we have anyone not in OP and that the link state is good.
// If so, then set our global IO bad boolean.
IF fbGetAllSlaveStates.nSlaves > 0 THEN
q_xAllSlaveStatesGood := TRUE;
FOR nIterator := 1 TO (UINT_TO_INT(fbGetAllSlaveStates.nSlaves) ) BY 1
DO
IF NOT( (astTermStates[nIterator].deviceState = EC_DEVICE_STATE_OP) AND (astTermStates[nIterator].linkState = EC_LINK_STATE_OK)) THEN
q_xAllSlaveStatesGood := FALSE;
END_IF
q_anTermStates[nIterator] := astTermStates[nIterator].deviceState;
q_astEcConfSlaveInfo[nIterator].nDeviceState :=astTermStates[nIterator].deviceState;//
q_astEcConfSlaveInfo[nIterator].nLinkState :=astTermStates[nIterator].linkState;//
q_astEcConfSlaveInfo[nIterator].sDeviceState:= F_ConvSlaveStateToString(state:=astTermStates[nIterator]);//
END_FOR
END_IF
// Read the EtherCAT state of the master. If the call is successful,
//the State output variable of type WORD contains the requested status information.
ftMasterReset(CLK:=fbGetMasterState.bBusy OR i_xFirstPass);
fbGetMasterState(sNetId:= sNetId, bExecute:=ftMasterReset.Q,
state => q_nMasterState,bError=>,
nErrId=>);
q_xMasterStateGood:= (fbGetMasterState.state = BYTE_TO_UINT(EC_DEVICE_STATE_OP));
q_sMasterState := F_ConvMasterDevStateToString(fbGetMasterState.state);
//This function is used to read a list of all configured slaves from the EtherCat master object Directory
//needs to run only once
fbGetConfSlaves(bExecute := i_xFirstPass, sNetId :=sNetId, pArrEcConfSlaveInfo := ADR(astEcConfSlaveInfo),cbBufLen := SIZEOF(astEcConfSlaveInfo));
q_nSlaves:=fbGetConfSlaves.nSlaves;
IF NOT (fbGetConfSlaves.bBusy) THEN
FOR nIterator := 1 TO (UINT_TO_INT(fbGetConfSlaves.nSlaves) ) BY 1
DO
q_astEcConfSlaveInfo[nIterator].nAddrr :=astEcConfSlaveInfo[nIterator].nAddr;
q_astEcConfSlaveInfo[nIterator].sName :=astEcConfSlaveInfo[nIterator].sName;
q_astEcConfSlaveInfo[nIterator].sType :=astEcConfSlaveInfo[nIterator].sType;
END_FOR
fbGetConfSlaves.bExecute := FALSE;
END_IF
END_FUNCTION_BLOCK
- Related:
FB_EcatDiagWrapper
FUNCTION_BLOCK FB_EcatDiagWrapper
VAR_INPUT
END_VAR
VAR_OUTPUT
bAllFrameWcStatesOK : BOOL; // all frames are OK
bEtherCATOK : BOOL; // no problem on EtherCAT
bFrameWcStateError : BOOL; // at least one fram with error
bSlaveCountError : BOOL; // EtherCAT slave count mismatch (# of cfg slaves <> # of found slaves)
bMasterDevStateError : BOOL; // EtherCAT master device state signals error
stMasterDevState : ST_EcMasterDevState; // device state split to a structure
bBusy : BOOL; // diagnostic FB is busy
bError : BOOL; // diagnostic FB has an error
iErrorID : UDINT; // error ID of diagnostic FB
END_VAR
VAR
(* ******************* EtherCAT Frame ***************************** *)
fbEtherCATFrameDiag : FB_EtherCATFrameDiag; // frame diagnostic
{attribute 'TcLinkTo' := 'TIID^Device 1 (EtherCAT)^Inputs^Frm1WcState'}
wFrmXWcState AT %I* : WORD; // link to task related ethercat frame state (Frm1WcState)
wReqZeroMask : WORD := 16#FFFF; // clear bit to ignore datagram error of Frm1WcState
bFrameWcStateOK : BOOL; // this frame is OK
(* ******************* EtherCAT Diag ***************************** *)
fbEtherCATDiag : FB_EtherCATDiag; // deep EtherCAT diagnostic
(* cyclic variables from EtherCAT Master *)
{attribute 'TcLinkTo' := 'TIID^Device 1 (EtherCAT)^Inputs^SlaveCount'}
nEcMasterSlaveCount AT %I* : UINT; // link to SlaveCount of EtherCAT Master (Inputs)
{attribute 'TcLinkTo' := 'TIID^Device 1 (EtherCAT)^Inputs^DevState'}
nEcMasterDevState AT %I* : UINT; // link to DevState of EtherCAT Master (Inputs)
{attribute 'TcLinkTo' := 'TIID^Device 1 (EtherCAT)^InfoData^DevId'}
nEcMasterDeviceId AT %I* : UINT; // link to DevID of EtherCAT Master (InfoData)
{attribute 'TcLinkTo' := 'TIID^Device 1 (EtherCAT)^InfoData^AmsNetId'}
arrEcMasterNetId AT %I* : T_AmsNetIdArr;// link to NetID of EtherCAT Master (InfoData)
sEcMasterNetId : T_AmsNetId := '';
{attribute 'TcLinkTo' := 'TIID^Device 1 (EtherCAT)^InfoData^CfgSlaveCount'}
nEcMasterSlaveCountCfg AT %I* : UINT; // link to CfgSlaveCount of EtherCAT Master (InfoData)
(* general variables *)
arrDiagSlaveInfo : ARRAY [0..ESC_MAX_PORTS] OF ST_SlaveStateInfo; // read in info of configured EtherCAT slaves
arrDiagSlaveInfoScanned : ARRAY [0..ESC_MAX_PORTS] OF ST_SlaveStateInfoScanned; // read in info of scanned EtherCAT slaves
END_VAR
(*************************************** Frame Diag *********************************************)
fbEtherCATFrameDiag(
wFrmXWcState := wFrmXWcState,
wReqZeroMask := wReqZeroMask,
bFrameWcStateOK => bFrameWcStateOK
);
bAllFrameWcStatesOK := bFrameWcStateOK;
(*************************************** EtherCAT Diag *********************************************)
(* generate Net Id *)
sEcMasterNetId := F_CreateAmsNetId(nIds := arrEcMasterNetId);
fbEtherCATDiag(
sIPCNetID := '',
sMasterNetID := sEcMasterNetId,
nMasterDevID := nEcMasterDeviceId,
nSlaveCount := nEcMasterSlaveCount,
nSlaveCountCfg := nEcMasterSlaveCountCfg,
nMasterDevState := nEcMasterDevState,
bAllFrameWcStatesOK := bAllFrameWcStatesOK,
tTimeout := T#5s,
arrDiagSlaveInfo := arrDiagSlaveInfo,
arrDiagSlaveInfoScanned := arrDiagSlaveInfoScanned,
bEtherCATOK => bEtherCATOK,
bFrameWcStateError => bFrameWcStateError,
bSlaveCountError => bSlaveCountError,
bMasterDevStateError=> bMasterDevStateError,
stMasterDevState => stMasterDevState,
bBusy => bBusy,
bError => bError,
iErrorID => iErrorID
);
END_FUNCTION_BLOCK
FB_EL6_Com
FUNCTION_BLOCK FB_EL6_Com
(*
Communicate with a serial device connected to an EL6XXX
2019-10-09 Zachary Lentz and Jackson Sheppard
May contain assumptions about the device we wrote it for, potentially will need to be adjusted
*)
VAR_INPUT
// Command to send to the serial device
{attribute 'pytmc' := '
pv: CMD
io: io
'}
sCmd: STRING;
// Pulse this to TRUE and back to FALSE when it's time to send
{attribute 'pytmc' := '
pv: SEND
io: io
'}
bSend: BOOL;
// Any static prefix to add before every sent message
sSendPrefix: STRING;
// Any static suffix to add after every sent message
sSendSuffix: STRING;
// Any static prefix to strip off of every recieved message
sRecvPrefix: STRING;
// Any static suffic to strip off of every recieved message
sRecvSuffix: STRING;
tTimeout: TIME := T#1S;
END_VAR
VAR_IN_OUT
stIn_EL6: EL6inData22B;
stOut_EL6: EL6outData22B;
END_VAR
VAR_OUTPUT
// The response recieved from the serial device
{attribute 'pytmc' := '
pv: RESP
io: input
'}
sResponse: STRING;
// This is set to TRUE after recieving a response
{attribute 'pytmc' := '
pv: DONE
io: input
'}
bDone: BOOL;
{attribute 'pytmc' := '
pv: ERR:SER
io: input
'}
eSerialLineErrorID: ComError_t;
{attribute 'pytmc' := '
pv: ERR:SEND
io: input
'}
eSendErrorID: ComError_t;
{attribute 'pytmc' := '
pv: ERR:RECV
io: input
'}
eRecvErrorID: ComError_t;
END_VAR
VAR
// Communication Buffers
TxBuffer: ComBuffer;
RxBuffer: ComBuffer;
fbClearComBuffer: ClearComBuffer;
// Parameters for PLC -> EL6
fbEL6Ctrl: SerialLineControl;
bEL6CtrlError: BOOL;
eEL6CtrlErrorID: ComError_t;
// Parameters for EL6 -> Serial Device
fbSend: SendString;
bSendBusy: BOOL;
eLastSendErrorID: ComError_t;
fbReceive: ReceiveString;
sReceivedString: STRING;
sLastReceivedString: STRING;
bStringReceived: BOOL;
bReceiveBusy: BOOL;
bReceiveError: BOOL;
eReceiveErrorID: ComError_t;
bReceiveTimeout: BOOL;
nReceiveCounter: UDINT;
nSendCounter: UDINT;
sStringToSend: STRING;
fbFormatString: FB_FormatString;
// Parameters for state-machine implementation
nStep: INT := 0;
END_VAR
fbEL6Ctrl(
Mode:= SERIALLINEMODE_EL6_22B,
pComIn:= ADR(stIn_EL6),
pComOut:= ADR(stOut_EL6),
SizeComIn:= UINT_TO_INT(SIZEOF(stIn_EL6)),
Error=> ,
ErrorID=> eSerialLineErrorID,
TxBuffer:= TxBuffer,
RxBuffer:= RxBuffer );
IF fbEL6Ctrl.Error THEN
bEL6CtrlError := TRUE;
eEL6CtrlErrorID := fbEL6Ctrl.ErrorID;
END_IF
IF bSend THEN
nStep := 10;
bSend := FALSE;
bDone := FALSE;
END_IF
// Attempt at solution that sends one command at a time, not on constant loop
CASE nStep OF
0:
; // idle
10:
// Clear buffers in case any lingering data
fbClearComBuffer(Buffer:=TxBuffer);
fbClearComBuffer(Buffer:=RxBuffer);
// Prepare string to send
sStringToSend := CONCAT(sSendPrefix, CONCAT(sCmd, sSendSuffix));
// Send string
fbSend( SendString:= sStringToSend,
TXbuffer:= TxBuffer,
Busy=> bSendBusy,
Error=> eSendErrorID);
IF fbSend.Error <> COMERROR_NOERROR THEN
eLastSendErrorID := fbSend.Error;
ELSE
nSendCounter := nSendCounter + 1;
END_IF
nStep := nStep + 10;
20:
// Finish sending String
IF fbSend.Busy THEN
fbSend( SendString:= sStringToSend,
TXbuffer:= TxBuffer,
Busy=> bSendBusy,
Error=> eSendErrorID);
IF fbSend.Error <> COMERROR_NOERROR THEN
eLastSendErrorID := fbSend.Error;
ELSE
nSendCounter := nSendCounter + 1;
END_IF
ELSE
nStep := nStep + 10;
END_IF
30:
// Get Reply
fbReceive(
Prefix:= sRecvPrefix,
Suffix:= sRecvSuffix,
Timeout:= tTimeout,
ReceivedString:= sReceivedString,
RXbuffer:= RxBuffer,
StringReceived=> bStringReceived,
Busy=> bReceiveBusy,
Error=> eRecvErrorID,
RxTimeout=> bReceiveTimeout );
IF fbReceive.Error <> COMERROR_NOERROR THEN
eReceiveErrorID := fbReceive.Error;
END_IF
IF bStringReceived THEN
nReceiveCounter := nReceiveCounter + 1;
// Check for response
IF FIND(sReceivedString, sStringToSend)=0 THEN
sResponse := sReceivedString;
bDone := TRUE;
nStep := 0;
END_IF
END_IF
END_CASE
END_FUNCTION_BLOCK
FB_EpicsCentroidMonitor
(*
EPICS AreaDetector Stats Plugin Centroid Monitor
Requirements:
* Requires an existing IOC with an EPICS AreaDetector.
* Requires an AreaDetector plugin chain that includes a stats plugin.
* Requires a pytmc "link" pragma to specify the plugin PV prefix.
What information is included?
* Centroid X position
* Centroid Y position
* Array count index
* The validity of the data, as determined by:
- The ArrayCounter_RBV PV changing
- Alarm severity of the PVs
- The centroid value changing, even minimally
Example:
{attribute 'pytmc' := '
pv: @(PREFIX):Chk:Centroid1
link: AREA:DETECTOR:CAM:01:Stats2:
'}
fbCentroid : FB_EpicsCentroidMonitor;
fbCentroid(bEnable:=TRUE, fMinimumValidChange:=1E-6, fNewFrameMinimumChange:=1E-6);
IF fbCentroid.bValid AND fbCentroid.bIsUpdating THEN
fbCentroid.fCentroidX;
fbCentroid.fCentroidY;
fbCentroid.nArrayCount;
fbCentroid.fFrameTime;
END_IF
Above, ``AREA:DETECTOR:CAM:01:Stats2`` should refer to the PV prefix of a
stats plugin.
That is, ``caget AREA:DETECTOR:CAM:01:Stats2:ArrayCounter_RBV`` should not
fail.
How does this work?
pytmc offers the ability to push EPICS process variable data into PLCs by
way of link pragmas. These link pragmas create additional supporting EPICS
records that monitor PVs from any IOC on the controls network. In this case,
the PLC IOC will monitor vital AreaDetector plugin record data and let your
PLC project know of its status.
Why are there multiple thresholds I have to specify?
``fNewFrameMinimumChange`` is the minimum change in pixels to say that
when the array counter changes, these are the new values for X and Y.
While this seems a bit confusing (or perhaps unnecessary), we do not
know when the array counters or centroid values will be updated. These
do not get written in a single, atomic write to the PLC. We may see an
updated array count and then a centroid X change and then a Y change.
This threshold is a way of working around that complexity and saying
the new data is here only when it's changed at least a bit and we have
a new frame number.
``fMinimumValidChange``, which by default is set to the same as the above
threshold, says that if the centroid value doesn't change by at least this
on a frame-to-frame basis, consider this a result of a faulty AreaDetector
implementation. The monitor would report values below this threshold as
"not updating" - ``bIsUpdating`` as ``FALSE``.
What needs to happen to get new centroid values?
- An updated array count
- An updated X centroid value (above fNewFrameMinimumChange)
- An updated Y centroid value (above fNewFrameMinimumChange)
- NO_ALARM severities for all values
This will result in an updated:
- fFrameTime (seconds between valid frames)
What needs to happen for ``bIsUpdating`` to be TRUE?
- All items from the above "new centroid values"
- Frame time below fMaximumFrameTime
- Centroid X and Y values above fMinimumValidChange
*)
FUNCTION_BLOCK FB_EpicsCentroidMonitor
VAR_INPUT
fMaximumFrameTime : LREAL := 0.2;
(* Minimum change to be considered updating correctly - buggy detectors may need this. *)
fMinimumValidChange : LREAL := 1E-6;
(* Minimum change in pixels to be considered a new value for X, Y *)
fNewFrameMinimumChange : LREAL := 1E-6;
bEnable : BOOL := TRUE;
END_VAR
VAR_OUTPUT
{attribute 'pytmc' := '
pv: IsUpdating
io: input
'}
bIsUpdating : BOOL;
{attribute 'pytmc' := '
pv: CentroidX
io: input
'}
fCentroidX : LREAL;
{attribute 'pytmc' := '
pv: CentroidY
io: input
'}
fCentroidY : LREAL;
{attribute 'pytmc' := '
pv: ArrayCount
io: input
'}
nArrayCount : UDINT;
bValid : BOOL;
{attribute 'pytmc' := '
pv: FrameTime
io: input
field: DESC Time between frame updates
field: EGU sec
'}
fFrameTime : LREAL;
END_VAR
VAR
{attribute 'pytmc' := '
pv: CX_
link: CentroidX_RBV
'}
fbCentroidX : FB_LREALFromEPICS;
{attribute 'pytmc' := '
pv: CY_
link: CentroidY_RBV
'}
fbCentroidY : FB_LREALFromEPICS;
fLastCentroidX : LREAL;
fLastCentroidY : LREAL;
{attribute 'pytmc' := '
pv: Cnt_
link: ArrayCounter_RBV
'}
fbArrayCounter : FB_LREALFromEPICS;
// Last array count value
nLastArrayCount : UDINT;
// Time of the last frame update
tLastUpdate: TIME;
bInit : BOOL;
// Did we see a frame update yet? (FALSE at startup; TRUE after first frame.)
bSawFrame : BOOL;
// Do we have a new frame? Has the array count updated, and position change above fNewFrameMinimumChange?
bHaveNewFrame : BOOL;
// For this new frame, is it above the threshold fMinimumValidChange?
bAboveThreshold : BOOL;
END_VAR
IF NOT bEnable THEN
bValid := FALSE;
RETURN;
END_IF
IF NOT bInit THEN
tLastUpdate := TIME();
fFrameTime := 1000.0;
bSawFrame := FALSE;
bInit := TRUE;
END_IF
fbCentroidX();
fbCentroidY();
fbArrayCounter();
bValid := (
fbCentroidX.bValid AND
fbCentroidY.bValid AND
fbArrayCounter.bValid
);
fCentroidX := fbCentroidX.fValue;
fCentroidY := fbCentroidY.fValue;
nArrayCount := LREAL_TO_UDINT(fbArrayCounter.fValue);
(*
Only consider that we have a new frame if:
1. The array count has been updated
2. X and Y values have changed even minimally
a. With background noise, this should not be a problem.
b. With an invalid black/white/stale image, this will indicate
'no new frame' despite an increasing array count.
*)
bHaveNewFrame := (
nArrayCount <> nLastArrayCount AND
ABS(fLastCentroidX - fCentroidX) >= fNewFrameMinimumChange AND
ABS(fLastCentroidY - fCentroidY) >= fNewFrameMinimumChange AND
TRUE
);
IF bHaveNewFrame THEN
bAboveThreshold := (
ABS(fLastCentroidX - fCentroidX) >= fMinimumValidChange AND
ABS(fLastCentroidY - fCentroidY) >= fMinimumValidChange
);
fFrameTime := TIME_TO_LREAL(TIME() - tLastUpdate) * 0.001; // Milliseconds -> seconds
tLastUpdate := TIME();
nLastArrayCount := nArrayCount;
bSawFrame := TRUE;
fLastCentroidX := fCentroidX;
fLastCentroidY := fCentroidY;
END_IF
bIsUpdating := bSawFrame AND (fFrameTime <= fMaximumFrameTime) AND bAboveThreshold;
END_FUNCTION_BLOCK
- Related:
FB_EpicsMotorMonitor
(*
EPICS Motor Record Monitoring tool
Requirements:
* Requires an existing IOC with an EPICS motor record.
* Requires a pytmc "link" pragma to specify the motor record prefix.
What information is included?
* The validity of the source data (as determined by alarm severity)
* Readback value (scaled encoder position in ``fPosition``)
* Motion status (moving or not, ``bIsMoving``)
* Homed status, limit status, and others (via ``stMSTA``, see
``ST_EpicsMotorMSTA``).
Example:
{attribute 'pytmc' := '
pv: @(PREFIX):Internal:Mon
link: MOTOR:PV:NAME
'}
fbMotorMonitor : FB_EpicsMotorMonitor;
fbMotorMonitor(bEnable:=TRUE);
IF fbMotorMonitor.bValid THEN
fbMotorMonitor.fPosition;
fbMotorMonitor.bIsMoving;
fbMotorMonitor.stMSTA.bHomed;
END_IF
Above, ``MOTOR:PV:NAME`` should refer to an EPICS motor record.
That is, ``caget MOTOR:PV:NAME.RTYP`` should return "motor".
How does this work?
pytmc offers the ability to push EPICS process variable data into PLCs by
way of link pragmas. These link pragmas create additional supporting EPICS
records that monitor PVs from any IOC on the controls network. In this case,
the PLC IOC will monitor vital motor record information and let your PLC
project know of its status.
Note that not all motor records may be created equally. Some of the status
fields may not be consistent. Be sure to check how your motor works and
what fields are worth paying attention to when using this.
*)
FUNCTION_BLOCK FB_EpicsMotorMonitor
VAR_INPUT
bEnable : BOOL := TRUE;
END_VAR
VAR_OUTPUT
bIsMoving : BOOL;
fPosition : LREAL;
nMSTA_Raw : UINT;
stMSTA : ST_EpicsMotorMSTA;
bValid : BOOL;
END_VAR
VAR
{attribute 'pytmc' := '
pv: RBV_
link: .RBV
'}
fbRBVCheck : FB_LREALFromEPICS;
{attribute 'pytmc' := '
pv: Dmov_
link: .DMOV
'}
fbMovingCheck : FB_LREALFromEPICS;
{attribute 'pytmc' := '
pv: Msta_
link: .MSTA
'}
fbMotorStatusCheck : FB_LREALFromEPICS;
END_VAR
IF NOT bEnable THEN
bValid := FALSE;
RETURN;
END_IF
fbRBVCheck();
fbMovingCheck();
fbMotorStatusCheck();
bValid := (
fbRBVCheck.bValid AND
fbMovingCheck.bValid AND
fbMotorStatusCheck.bValid
);
(* Moving status is DMOV; this comes in as a floating point value
DMOV = 0 -> moving
DMOV = 1 -> done moving, or not moving
*)
bIsMoving := ABS(fbMovingCheck.fValue) < 1e-5;
fPosition := fbRBVCheck.fValue;
nMSTA_Raw := LREAL_TO_UINT(fbMotorStatusCheck.fValue);
stMSTA.bPositiveDirection := nMSTA_Raw.0;
stMSTA.bDone := nMSTA_Raw.1;
stMSTA.bPlusLimitSwitch := nMSTA_Raw.2;
stMSTA.bHomeLimitSwitch := nMSTA_Raw.3;
stMSTA.bUnused0 := nMSTA_Raw.4;
stMSTA.bClosedLoop := nMSTA_Raw.5;
stMSTA.bSlipStall := nMSTA_Raw.6;
stMSTA.bHome := nMSTA_Raw.7;
stMSTA.bEncoderPresent := nMSTA_Raw.8;
stMSTA.bHardwareProblem := nMSTA_Raw.9;
stMSTA.bMoving := nMSTA_Raw.10;
stMSTA.bGainSupport := nMSTA_Raw.11;
stMSTA.bCommError := nMSTA_Raw.12;
stMSTA.bMinusLimitSwitch := nMSTA_Raw.13;
stMSTA.bHomed := nMSTA_Raw.14;
END_FUNCTION_BLOCK
- Related:
FB_EPS
FUNCTION_BLOCK FB_EPS
VAR_IN_OUT
eps : DUT_EPS;
END_VAR
VAR_OUTPUT
END_VAR
VAR
END_VAR
END_FUNCTION_BLOCK
METHOD setBit : BOOL
VAR_INPUT
nBits : BYTE;
bValue : BOOL;
END_VAR
VAR
nMask : UDINT := 1;
nBitValue : UDINT := 0;
END_VAR
nMask := SHL(nMask, nBits);
nBitValue := SHR((nMask AND eps.nFlags), nBits);
IF (TO_BOOL(nBitValue)) <> bValue THEN
eps.nFlags := eps.nFlags XOR nMask;
END_IF
// Check if all values are true
IF eps.nFlags = 16#FFFFFFFF THEN
eps.bEPS_OK := TRUE;
ELSE
eps.bEPS_OK := FALSE;
END_IF
END_METHOD
METHOD setDescription : BOOL
VAR_INPUT
desciption : STRING;
END_VAR
eps.sFlagDesc := desciption;
END_METHOD
METHOD setMessage : BOOL
VAR_INPUT
message : STRING;
END_VAR
eps.sMessage := message;
END_METHOD
- Related:
FB_EtherCATDiag
FUNCTION_BLOCK FB_EtherCATDiag
VAR_INPUT
sIPCNetID : T_AmsNetId; // AmsNetId of the IPC
sMasterNetID : T_AmsNetId; // AmsNetId of the EtherCAT master device
nMasterDevID : UINT; // Device ID of EtherCAT master
nSlaveCount : UINT; // current slave count
nSlaveCountCfg : UINT; // configured slave count
nMasterDevState : WORD; // device state of EtherCAT Master
bAllFrameWcStatesOK : BOOL; // all FrameWcState OK?
tTimeout : TIME := T#5S; // ads timeout
eSubSystem : E_Subsystem := E_Subsystem.FIELDBUS; // Subsystem, change to (MPS, VACUUM, MOTION, etc)
END_VAR
VAR_OUTPUT
bEtherCATOK : BOOL; // no problem on EtherCAT
bFrameWcStateError : BOOL; // error in at least one frame
bSlaveCountError : BOOL; // EtherCAT slave count mismatch (# of cfg slaves <> # of found slaves)
bMasterDevStateError : BOOL; // error in master device state
stMasterDevState : ST_EcMasterDevState; // splitted master device state
bBusy : BOOL; // FB busy
bError : BOOL; // FB with error
iErrorID : UDINT; // FB error ID
END_VAR
VAR_IN_OUT
arrDiagSlaveInfo : ARRAY [0..ESC_MAX_PORTS] OF ST_SlaveStateInfo; // read in info from configured slaves
arrDiagSlaveInfoScanned : ARRAY [0..ESC_MAX_PORTS] OF ST_SlaveStateInfoScanned; // read in info from scanned slaves
END_VAR
VAR
iState : E_EcatDiagState;
nMasterDevStatePrev : WORD;
bSlaveCountErrorPrev : BOOL;
bAllFrameWcStatesOKPrev : BOOL;
bDiagReq : BOOL := TRUE;
I : UDINT;
P : UDINT;
arrSlaveInfo : ARRAY [0..iSLAVEADDR_ARR_SIZE] OF ST_SlaveStateInfo;
rSlaveInfo : REFERENCE TO ST_SlaveStateInfo;
(* -- Get Slave Addresses *)
fbGetSlaveAddresses : FB_EcGetAllSlaveAddr;
arrSlaveAddresses : ARRAY[0..iSLAVEADDR_ARR_SIZE] OF UINT;
iNumOfSlavesRead : UINT;
(* -- Get Slave States *)
fbGetAllSlaveStates : FB_EcGetAllSlaveStates;
arrSlaveStates : ARRAY[0..iSLAVEADDR_ARR_SIZE] OF ST_EcSlaveState;
(* -- Get Topology Data *)
iTopologyData : UDINT;
fbGetTopologyData : ADSREAD;
arrTopologyData : ARRAY[0..iSLAVEADDR_ARR_SIZE] OF ST_TopologyData;
(* -- Check Topology *)
aiDiagIndex : ARRAY [0..ESC_MAX_PORTS] OF UINT;
iDiagIndex : UINT;
aiDiagPort : ARRAY [0..ESC_MAX_PORTS] OF UINT;
iDiagPort : UINT;
iIdx : DINT;
(* -- Scan Slaves *)
fbEcGetScannedSlaves : FB_EcGetScannedSlaves;
arrScannedSlaveInfo : ARRAY [0..iSLAVEADDR_ARR_SIZE] OF ST_EcSlaveScannedData; // what...
rScannedSlaveInfo : REFERENCE TO ST_EcSlaveScannedData;
nScannedSlaves : UINT;
(* -- Get Slave Identities *)
fbGetSlaveIdentity : FB_EcGetSlaveIdentity;
stIdentity : ST_EcSlaveIdentity;
(* -- Get Slave Names *)
fbGetSlaveName : IOF_GetBoxNameByAddr;
arrSlaveInfoScanned : ARRAY [0..iSLAVEADDR_ARR_SIZE] OF ST_SlaveStateInfoScanned; // the F
rSlaveInfoScanned : REFERENCE TO ST_SlaveStateInfoScanned;
strName : STRING;
// Logging components
fbLogger : FB_LogMessage := (eSubsystem := eSubsystem);
fbJson : FB_JsonSaxWriter;
fbJsonDataType : FB_JsonReadWriteDataType;
rDiagSlaveInfo : REFERENCE TO ST_SlaveStateInfo;
tEtherCATOK : F_TRIG;
tFrameWcStateError : R_TRIG;
tMasterError : R_TRIG;
jsonIdx : UINT;
{attribute 'analysis' := '-27'}
test : T_MaxString;
END_VAR
(* cyclic diag *)
bFrameWcStateError := NOT bAllFrameWcStatesOK;
bSlaveCountError := (nSlaveCount <> nSlaveCountCfg) OR (nSlaveCount = 0);
IF (bSlaveCountError AND NOT bSlaveCountErrorPrev) OR (NOT bSlaveCountError AND bSlaveCountErrorPrev) THEN
bSlaveCountErrorPrev := bSlaveCountError;
bDiagReq := TRUE; // slave count error change detected --> diag required
END_IF
IF (bAllFrameWcStatesOK AND NOT bAllFrameWcStatesOKPrev) OR (NOT bAllFrameWcStatesOK AND bAllFrameWcStatesOKPrev) THEN
bAllFrameWcStatesOKPrev := bAllFrameWcStatesOK;
bDiagReq := TRUE; // frame error change detected --> diag required
END_IF
IF (nMasterDevState <> nMasterDevStatePrev) THEN
M_CheckMasterDevState();
bDiagReq := TRUE; // devstate change detected --> diag required
END_IF
(* acyclic diag *)
CASE iState OF
E_EcatDiagState.Idle: (* IDLE *)
IF bDiagReq THEN // diag requested
bDiagReq := FALSE;
IF sMasterNetID <> '' AND sMasterNetID <> '0.0.0.0.0.0' THEN
iState := E_EcatDiagState.GetSlaveAddresses; // execute diag
bBusy := TRUE;
ELSE
bError := TRUE;
iErrorID := 7;
END_IF
bEtherCATOK := FALSE;
ELSE
// check for changes in idle
IF (bSlaveCountError OR bMasterDevStateError OR NOT bAllFrameWcStatesOK) AND NOT (arrSlaveInfo[aiDiagIndex[0]].bDiagData) THEN
bEtherCATOK := FALSE;
bDiagReq := TRUE;//new error --> diag requested
ELSIF (bSlaveCountError AND NOT bSlaveCountErrorPrev) OR (NOT bSlaveCountError AND bSlaveCountErrorPrev) THEN
bSlaveCountErrorPrev := bSlaveCountError;
bEtherCATOK := FALSE;
bDiagReq := TRUE;// slave count error change detected --> diag required
ELSIF (nMasterDevState <> nMasterDevStatePrev) THEN
bEtherCATOK := FALSE;
bDiagReq := TRUE;// devstate change detected --> diag required
ELSIF (bAllFrameWcStatesOK AND NOT bAllFrameWcStatesOKPrev) OR (NOT bAllFrameWcStatesOK AND bAllFrameWcStatesOKPrev) THEN
bAllFrameWcStatesOKPrev := bAllFrameWcStatesOK;
bEtherCATOK := FALSE;
bDiagReq := TRUE;// frame error change detected --> diag required
ELSIF (bSlaveCountError OR bMasterDevStateError OR NOT bAllFrameWcStatesOK OR arrSlaveInfo[aiDiagIndex[0]].bDiagData) THEN
bEtherCATOK := FALSE;
ELSE
bEtherCATOK := TRUE;
END_IF
END_IF
E_EcatDiagState.GetSlaveAddresses: (* get adresses *)
M_GetSlaveAdresses();
E_EcatDiagState.GetSlaveStates: (* get states *)
M_GetSlaveStates();
E_EcatDiagState.GetTopoDataLen: (* get topology data length *)
M_GetTopoDataLen();
E_EcatDiagState.GetTopoData: (* get topology data *)
M_GetTopoData();
E_EcatDiagState.ScanSlaves: (* scan slaves *)
M_ScanSlaves();
E_EcatDiagState.GetSlaveIdentity: (* get identity *)
M_GetSlaveIdentity();
E_EcatDiagState.GetSlaveName: (* get name *)
M_GetSlaveName();
E_EcatDiagState.GetScannedSlaveName: (* get scanned name *)
M_GetScannedSlaveName();
E_EcatDiagState.LogDiagnostics: (* Log diagnostics *)
(* I can't get the fbJsonDataType to actually convert the slave info
structures. I just get nulls. Either I am doing this wrong, or when
the symbol parser encounters datatypes it can't deal with it nulls
the whole thing. I'll keep this code commented out until someone figures
out how to deal with parsing the slave structs into the json payload *)
IF jsonIdx < iNumOfSlavesRead THEN // the last entry is always blank
jsonIdx := MIN(iSLAVEADDR_ARR_SIZE, jsonIdx);
rDiagSlaveInfo REF= arrSlaveInfo[jsonIdx];
DiagnosticJson();
fbLogger(sMsg:=CONCAT('Diag Results: ', rDiagSlaveInfo.sName),
eSevr:=TcEventSeverity.Info);
jsonIdx := jsonIdx + 1;
ELSE
jsonIdx := 0;
iState := E_EcatDiagState.Done;
END_IF
E_EcatDiagState.Done: (* DONE *)
bBusy := FALSE;
iState := 0;
END_CASE
// Log messages
tEtherCATOK(CLK:=bEtherCATOK);
IF tEtherCATOK.Q THEN
fbLogger(sMsg:='EtherCAT failure, starting diagnostic', eSevr:=TcEventSeverity.Critical, sJson:='');
END_IF
tFrameWcStateError(CLK:=bFrameWcStateError);
IF tFrameWcStateError.Q THEN
fbLogger(sMsg:='Working Counter Frame Error: error in at least one frame', eSevr:=TcEventSeverity.Error, sJson:='');
END_IF
tMasterError(CLK:=bMasterDevStateError);
IF tMasterError.Q THEN
fbJson.StartObject();
fbJson.AddKey('ecat_master_diag');
fbJson.StartObject();
fbJson.AddKey('bAtLeastOneNotInOp');
fbJson.AddBool(stMasterDevState.bAtLeastOneNotInOp);
fbJson.AddKey('bDcNotInSync');
fbJson.AddBool(stMasterDevState.bDcNotInSync);
fbJson.AddKey('bDriverNotFound');
fbJson.AddBool(stMasterDevState.bDriverNotFound);
fbJson.AddKey('bLinkError');
fbJson.AddBool(stMasterDevState.bLinkError);
fbJson.AddKey('bMissFrmRedMode');
fbJson.AddBool(stMasterDevState.bMissFrmRedMode);
fbJson.AddKey('bResetActive');
fbJson.AddBool(stMasterDevState.bResetActive);
fbJson.AddKey('bResetRequired');
fbJson.AddBool(stMasterDevState.bResetRequired);
fbJson.AddKey('bWatchdogTriggerd');
fbJson.AddBool(stMasterDevState.bWatchdogTriggerd);
fbJson.AddKey('eEcState');
fbJson.AddUdint(stMasterDevState.eEcState);
fbJson.EndObject();
fbJson.EndObject();
fbJson.CopyDocument(fbLogger.sJson, SIZEOF(fbLogger.sJson));
fbLogger(sMsg:='Master error: error in master device state', eSevr:=TcEventSeverity.Critical);
fbJson.ResetDocument();
END_IF
END_FUNCTION_BLOCK
ACTION DiagnosticJson:
fbJson.StartObject();
fbJson.AddKey('ecat_diag');
fbJson.StartObject();
fbJson.AddKey('nECAddr');
fbJson.AddUdint(rDiagSlaveInfo.nECAddr);
fbJson.AddKey('nIndex');
fbJson.AddDint(rDiagSlaveInfo.nIndex);
fbJson.AddKey('sName');
fbJson.AddString(rDiagSlaveInfo.sName);
fbJson.AddKey('sType');
fbJson.AddString(rDiagSlaveInfo.sType);
fbJson.AddKey('bDiagData');
fbJson.AddBool(rDiagSlaveInfo.bDiagData);
fbJson.AddKey('stPortCRCErrors');
fbjson.StartObject();
fbJson.AddKey('portA');
fbJson.AddUdint(rDiagSlaveInfo.stPortCRCErrors.portA);
fbJson.AddKey('portB');
fbJson.AddUdint(rDiagSlaveInfo.stPortCRCErrors.portB);
fbJson.AddKey('portC');
fbJson.AddUdint(rDiagSlaveInfo.stPortCRCErrors.portC);
fbJson.AddKey('portD');
fbJson.AddUdint(rDiagSlaveInfo.stPortCRCErrors.portD);
fbJson.EndObject();
fbJson.AddKey('nSumCRCErrors');
fbjson.AddUdint(rDiagSlaveInfo.nSumCRCErrors);
fbJson.AddKey('stState');
fbJson.StartObject();
fbJson.AddKey('eEcState ');
fbJson.AddUdint(rDiagSlaveInfo.stState.eEcState);
fbJson.AddKey('nReserved');
fbJson.AddUdint(rDiagSlaveInfo.stState.nReserved);
fbJson.AddKey('bError');
fbJson.AddBool(rDiagSlaveInfo.stState.bError);
fbJson.AddKey('bInvalidVPRS');
fbJson.AddBool(rDiagSlaveInfo.stState.bInvalidVPRS);
fbJson.AddKey('nReserved2');
fbJson.AddUdint(rDiagSlaveInfo.stState.nReserved2);
fbJson.AddKey('bNoCommToSlave');
fbJson.AddBool(rDiagSlaveInfo.stState.bNoCommToSlave);
fbJson.AddKey('bLinkError');
fbJson.AddBool(rDiagSlaveInfo.stState.bLinkError);
fbJson.AddKey('bMissingLink');
fbJson.AddBool(rDiagSlaveInfo.stState.bMissingLink);
fbJson.AddKey('bUnexpectedLink');
fbJson.AddBool(rDiagSlaveInfo.stState.bUnexpectedLink);
fbJson.AddKey('bPortA');
fbJson.AddBool(rDiagSlaveInfo.stState.bPortA);
fbJson.AddKey('bPortB');
fbJson.AddBool(rDiagSlaveInfo.stState.bPortB);
fbJson.AddKey('bPortC');
fbJson.AddBool(rDiagSlaveInfo.stState.bPortC);
fbJson.AddKey('bPortD');
fbJson.AddBool(rDiagSlaveInfo.stState.bPortD);
fbJson.EndObject();
fbJson.EndObject();
fbJson.EndObject();
fbJson.CopyDocument(fbLogger.sJson, SIZEOF(fbLogger.sJson));
fbJson.ResetDocument();
END_ACTION
ACTION M_CheckMasterDevState:
(* check master errors based on devstate *)
bMasterDevStateError := nMasterDevState <> 0;
stMasterDevState.bLinkError := ((nMasterDevState AND 16#000F) = 1) OR ((nMasterDevState AND 16#000F) = 4);
stMasterDevState.bResetRequired := ((nMasterDevState AND 16#000F) = 2) OR ((nMasterDevState AND 16#FFF0) = 16#10);
stMasterDevState.bMissFrmRedMode := (nMasterDevState AND 16#000F) = 8;
stMasterDevState.bWatchdogTriggerd := (nMasterDevState AND 16#20) = 16#20;
stMasterDevState.bDriverNotFound := (nMasterDevState AND 16#40) = 16#40;
stMasterDevState.bResetActive := (nMasterDevState AND 16#80) = 16#80;
stMasterDevState.bAtLeastOneNotInOp := ((nMasterDevState AND 16#100) = 16#100) OR ((nMasterDevState AND 16#200) = 16#200) OR
((nMasterDevState AND 16#400) = 16#400) OR ((nMasterDevState AND 16#800) = 16#800);
stMasterDevState.bDcNotInSync := (nMasterDevState AND 16#1000) = 16#1000;
nMasterDevStatePrev := nMasterDevState;
END_ACTION
ACTION M_GetScannedSlaveName:
rSlaveInfoScanned REF= arrSlaveInfoScanned[aiDiagIndex[iIdx]];
rScannedSlaveInfo REF= arrScannedSlaveInfo[aiDiagIndex[iIdx]];
fbGetSlaveName(
NETID := sIPCNetId,
DEVICEID := nMasterDevID,
BOXADDR := rScannedSlaveInfo.nAddr,
START := TRUE,
TMOUT := tTimeout,
BOXNAME => strName
);
IF NOT fbGetSlaveName.BUSY THEN
fbGetSlaveName(START:= FALSE);
(* add scanned info *)
rSlaveInfoScanned.nIndex := iDiagIndex + 1;
IF rScannedSlaveInfo.nAddr <> 0 THEN
IF NOT fbGetSlaveName.ERR THEN
rSlaveInfoScanned.sName := strName;
END_IF
ELSE
rSlaveInfoScanned.sType := '';
END_IF
IF (iDiagIndex < nScannedSlaves) THEN
rSlaveInfoScanned.sType := F_ConvProductCodeToString(rScannedSlaveInfo.stSlaveIdentity);
ELSE
rSlaveInfoScanned.sType := '';
END_IF
rSlaveInfoScanned.nECAddr := rScannedSlaveInfo.nAddr;
IF rSlaveInfoScanned.sName <> rSlaveInfo.sName THEN
rSlaveInfoScanned.bDifferentName := TRUE;
ELSE
rSlaveInfoScanned.bDifferentName := FALSE;
END_IF
IF rSlaveInfoScanned.nECAddr <> rSlaveInfo.nECAddr THEN
rSlaveInfoScanned.bDifferentAddr := TRUE;
ELSE
rSlaveInfoScanned.bDifferentAddr := FALSE;
END_IF
IF rSlaveInfoScanned.sType <> rSlaveInfo.sType THEN
rSlaveInfoScanned.bDifferentType := TRUE;
ELSE
rSlaveInfoScanned.bDifferentType := FALSE;
END_IF
IF iIdx < ESC_MAX_PORTS THEN
iIdx := iIdx + 1;
iState := E_EcatDiagState.GetSlaveIdentity; // loop back
ELSE
iIdx := 0;
iState := E_EcatDiagState.LogDiagnostics;
FOR I := 0 TO ESC_MAX_PORTS DO
IF aiDiagPort[I] <> 0 THEN
arrDiagSlaveInfo[I] := arrSlaveInfo[aiDiagIndex[I]];
arrDiagSlaveInfoScanned[I] := arrSlaveInfoScanned[aiDiagIndex[I]];
ELSE
MEMSET(ADR(arrDiagSlaveInfo[I]), 0, SIZEOF(arrDiagSlaveInfo[I]));
MEMSET(ADR(arrDiagSlaveInfoScanned[I]), 0, SIZEOF(arrDiagSlaveInfoScanned[I]));
END_IF
END_FOR
END_IF
END_IF
END_ACTION
ACTION M_GetSlaveAdresses:
fbGetSlaveAddresses(
sNetId := sMasterNetID,
pAddrBuf := ADR(arrSlaveAddresses),
cbBufLen := SIZEOF(arrSlaveAddresses),
bExecute := TRUE,
tTimeout := tTimeout,
nSlaves => iNumOfSlavesRead
);
IF NOT fbGetSlaveAddresses.bBusy THEN
fbGetSlaveAddresses(bExecute:= FALSE);
IF NOT fbGetSlaveAddresses.bError THEN
FOR I := 0 TO MIN(iNumOfSlavesRead, iSLAVEADDR_ARR_SIZE) DO
arrSlaveInfo[I].nECAddr := arrSlaveAddresses[I];
END_FOR
END_IF
iState := GetSlaveStates;
END_IF
END_ACTION
ACTION M_GetSlaveIdentity:
iDiagIndex := aiDiagIndex[iIdx];
iDiagPort := aiDiagPort[iIdx];
rSlaveInfo REF= arrSlaveInfo[iDiagIndex];
fbGetSlaveIdentity(
sNetId := sMasterNetID,
nSlaveAddr := rSlaveInfo.nECAddr,
bExecute := TRUE,
tTimeout := tTimeout,
identity => stIdentity
);
IF NOT fbGetSlaveIdentity.bBusy THEN
fbGetSlaveIdentity(bExecute:= FALSE);
IF NOT fbGetSlaveIdentity.bError THEN
IF aiDiagPort[iIdx] <> 0 THEN
rSlaveInfo.nIndex := aiDiagIndex[iIdx] + 1;
rSlaveInfo.sType := F_ConvProductCodeToString(stSlaveIdentity := stIdentity);
END_IF
END_IF
iState := E_EcatDiagState.GetSlaveName;
END_IF
END_ACTION
ACTION M_GetSlaveName:
fbGetSlaveName(
NETID := sIPCNetId,
DEVICEID := nMasterDevID,
BOXADDR := rSlaveInfo.nECAddr,
START := TRUE,
TMOUT := tTimeout,
BOXNAME => strName
);
IF NOT fbGetSlaveName.BUSY THEN
fbGetSlaveName(START:= FALSE);
IF NOT fbGetSlaveName.ERR THEN
IF iDiagPort <> 0 THEN
rSlaveInfo.sName := strName;
END_IF
END_IF
iState := E_EcatDiagState.GetScannedSlaveName;
END_IF
END_ACTION
ACTION M_GetSlaveStates:
fbGetAllSlaveStates(
sNetId := sMasterNetID,
pStateBuf := ADR(arrSlaveStates),
cbBufLen := SIZEOF(arrSlaveStates),
bExecute := TRUE,
tTimeout := tTimeout,
nSlaves => iNumOfSlavesRead
);
IF NOT fbGetAllSlaveStates.bBusy THEN
fbGetAllSlaveStates(bExecute:= FALSE);
IF NOT fbGetAllSlaveStates.bError THEN
IF iNumOfSlavesRead = nSlaveCountCfg THEN
FOR I := 0 TO ESC_MAX_PORTS DO
aiDiagIndex[I] := 0;
END_FOR
(* split slave state and link state *)
FOR I := 0 TO MIN(iNumOfSlavesRead, iSLAVEADDR_ARR_SIZE) DO
(* slave state*)
arrSlaveInfo[I].stState.eEcState := arrSlaveStates[I].deviceState AND 16#0F;
arrSlaveInfo[I].stState.bError := arrSlaveStates[I].deviceState.4;
arrSlaveInfo[I].stState.bInvalidVPRS := arrSlaveStates[I].deviceState.5;
(* link state *)
arrSlaveInfo[I].stState.bNoCommToSlave := arrSlaveStates[I].linkState.0;
arrSlaveInfo[I].stState.bLinkError := arrSlaveStates[I].linkState.1;
arrSlaveInfo[I].stState.bMissingLink := arrSlaveStates[I].linkState.2;
arrSlaveInfo[I].stState.bUnexpectedLink := arrSlaveStates[I].linkState.3;
arrSlaveInfo[I].stState.bPortA := arrSlaveStates[I].linkState.4;
arrSlaveInfo[I].stState.bPortB := arrSlaveStates[I].linkState.5;
arrSlaveInfo[I].stState.bPortC := arrSlaveStates[I].linkState.6;
arrSlaveInfo[I].stState.bPortD := arrSlaveStates[I].linkState.7;
(* DiagData *)
arrSlaveInfo[I].bDiagData := ((arrSlaveStates[I].deviceState AND 16#F0) <> 0) OR
(((arrSlaveStates[I].deviceState AND 16#0F) > 0) AND ((arrSlaveStates[I].deviceState AND 16#0F) < 8)) OR
(arrSlaveStates[I].linkState <> 0);
IF arrSlaveInfo[I].bDiagData THEN
IF (I=0) THEN
aiDiagIndex[0] := 0;
ELSE
IF (aiDiagIndex[0] = 0) AND NOT arrSlaveInfo[0].bDiagData THEN
aiDiagIndex[0] := UDINT_TO_UINT(I);
END_IF
END_IF
END_IF
END_FOR
END_IF
END_IF
IF arrSlaveInfo[aiDiagIndex[0]].bDiagData THEN
iState := E_EcatDiagState.GetTopoDataLen;
ELSE
FOR I := 0 TO ESC_MAX_PORTS DO
MEMSET(ADR(arrDiagSlaveInfo[I]), 0, SIZEOF(arrDiagSlaveInfo[I]));
MEMSET(ADR(arrDiagSlaveInfoScanned[I]), 0, SIZEOF(arrDiagSlaveInfoScanned[I]));
END_FOR
iState := E_EcatDiagState.Done;
END_IF
END_IF
END_ACTION
ACTION M_GetTopoData:
fbGetTopologyData(
NETID := sMasterNetID,
PORT := 16#FFFF,
IDXGRP := 16#22,
IDXOFFS := 0,
LEN := iTopologyData*SIZEOF(arrTopologyData[0]),
DESTADDR:= ADR(arrTopologyData),
READ := TRUE,
TMOUT := tTimeout,
);
IF NOT fbGetTopologyData.BUSY THEN
fbGetTopologyData(READ := FALSE);
IF NOT fbGetTopologyData.ERR THEN
aiDiagPort[0] := arrTopologyData[aiDiagIndex[0]].iOwnPhysicalAddr;
aiDiagPort[1] := arrTopologyData[aiDiagIndex[0]].stPhysicalAddr.portB;
aiDiagPort[2] := arrTopologyData[aiDiagIndex[0]].stPhysicalAddr.portC;
aiDiagPort[ESC_MAX_PORTS] := arrTopologyData[aiDiagIndex[0]].stPhysicalAddr.portD;
(* clear diag index *)
aiDiagIndex[1] := 0;
aiDiagIndex[2] := 0;
aiDiagIndex[ESC_MAX_PORTS] := 0;
(* find slaves on PortB-D of first slave with diag *)
FOR P := 0 TO ESC_MAX_PORTS DO
IF aiDiagPort[P] <> 0 THEN
FOR I := 0 TO MIN(iTopologyData-1,iSLAVEADDR_ARR_SIZE) DO
IF arrTopologyData[I].iOwnPhysicalAddr = aiDiagPort[P] THEN
aiDiagIndex[P] := UDINT_TO_UINT(I);
EXIT;
END_IF
END_FOR
END_IF
END_FOR
END_IF
iIdx := 0;
iState := E_EcatDiagState.ScanSlaves;
END_IF
END_ACTION
ACTION M_GetTopoDataLen:
fbGetTopologyData(
NETID := sMasterNetID,
PORT := 16#FFFF,
IDXGRP := EC_ADS_IGRP_MASTER_COUNT_SLAVE,
IDXOFFS := EC_ADS_IOFFS_MASTER_COUNT_SLAVE,
LEN := SIZEOF(iTopologyData),
DESTADDR:= ADR(iTopologyData),
READ := TRUE,
TMOUT := tTimeout,
);
IF NOT fbGetTopologyData.BUSY THEN
fbGetTopologyData(READ := FALSE);
iState := E_EcatDiagState.GetTopoData;
END_IF
END_ACTION
ACTION M_ScanSlaves:
fbEcGetScannedSlaves(
bExecute := TRUE,
sNetId := sMasterNetID,
pArrEcScannedSlaveInfo := ADR(arrScannedSlaveInfo),
cbBufLen := SIZEOF(arrScannedSlaveInfo),
tTimeout := tTimeout
);
IF NOT fbEcGetScannedSlaves.bBusy THEN
fbEcGetScannedSlaves(bExecute := FALSE);
IF fbEcGetScannedSlaves.bError THEN
nScannedSlaves := 0;
ELSE
nScannedSlaves := fbEcGetScannedSlaves.nSlaves;
END_IF
iState := E_EcatDiagState.GetSlaveIdentity;
END_IF
END_ACTION
FB_EtherCATFrameDiag
FUNCTION_BLOCK FB_EtherCATFrameDiag
VAR_INPUT
wFrmXWcState : WORD; // FrmXWcState
wReqZeroMask : WORD := 16#FFFF; // mask, bit TRUE: require wFrmXWcState.bit = FALSE, bit FALSE: ignore wFrmXWcState.bit *)
END_VAR
VAR_OUTPUT
bFrameWcStateOK : BOOL; // result of fram state check
END_VAR
VAR
END_VAR
(* mask out ignored error bits and compare result against 0 *)
bFrameWcStateOK := ((wFrmXWcState AND wReqZeroMask) = 0);
END_FUNCTION_BLOCK
FB_FlutterDetection
FUNCTION_BLOCK FB_FlutterDetection
VAR_INPUT
bVarToMonitor : BOOL;
fPastTime : TIME := T#5000ms;
nMaxFlipsAllowed : UDINT := 10;
// If set to TRUE, reset flutter detection.
{attribute 'pytmc' := 'pv: FLUTTER:RESET'}
bReset : BOOL;
END_VAR
VAR_OUTPUT
bExceededFlipMax : BOOL;
END_VAR
VAR
bInit : BOOL := FALSE;
bLastVarValue : BOOL;
nNumFlipped : UINT;
tTimer : TON;
rtReset : r_trig;
END_VAR
IF NOT bInit THEN
bLastVarValue := bVarToMonitor;
nNumFlipped := 0;
bExceededFlipMax := FALSE;
tTimer(IN:=FALSE);
tTimer(IN:=TRUE, PT:=fPastTime);
bInit := TRUE;
END_IF
rtReset(CLK:=bReset);
IF rtReset.Q THEN
// re-initialize
bInit := FALSE;
END_IF
bReset R= rtReset.Q;
tTimer();
IF tTimer.Q THEN
IF nNumFlipped > nMaxFlipsAllowed THEN
bExceededFlipMax := TRUE;
// timer off, no need to count.
ELSE
nNumFlipped := 0;
// reset timer
tTimer(IN:=FALSE);
tTimer(IN:=TRUE);
END_IF
END_IF
// stop counting after exceed.
IF NOT bExceededFlipMax THEN
IF bLastVarValue <> bVarToMonitor THEN
nNumFlipped := nNumFlipped +1;
bLastVarValue := bVarToMonitor;
END_IF
END_IF
END_FUNCTION_BLOCK
FB_FlutterDetection_Test
FUNCTION_BLOCK FB_FlutterDetection_Test EXTENDS TcUnit.FB_TestSuite
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
fbFlutterDet : FB_FlutterDetection;
nFirstCycleCount : UDINT;
nCurrentSystemCycle : UDINT;
nCurrentLocalCycle : UDINT;
END_VAR
TestFlutterResolution();
TestFlutterReset();
END_FUNCTION_BLOCK
METHOD TestFlutterReset
VAR_INST
fbTestTimer : TON := (PT := T#300ms);
bInit : BOOL := FALSE;
bVarToMonitor : BOOL := TRUE;
END_VAR
(* after trip, function should latch exceeded flag remains tripped. Finally,
check that after reset, the coount resets and the exceeded flag
goes low, then trips again. *)
TEST('TestFlutterReset');
IF NOT bInit THEN
nFirstCycleCount := _TaskInfo[GETCURTASKINDEXEX()].CycleCount;
bInit := TRUE;
END_IF
nCurrentSystemCycle := _TaskInfo[GETCURTASKINDEXEX()].CycleCount;
nCurrentLocalCycle := nCurrentSystemCycle - nFirstCycleCount;
fbTestTimer(IN := TRUE);
bVarToMonitor := NOT bVarToMonitor;
fbFlutterDet(bVarToMonitor:=bVarToMonitor ,fPastTime:=T#50ms ,nMaxFlipsAllowed:=4);
CASE nCurrentLocalCycle OF
10:
AssertTrue(fbFlutterDet.bExceededFlipMax, 'exceeded flag not present');
11:
// latched
AssertTrue(fbFlutterDet.bExceededFlipMax, 'exceeded flag not present');
12:
// latched
AssertTrue(fbFlutterDet.bExceededFlipMax, 'exceeded flag not present');
fbFlutterDet(bReset:=TRUE);
13:
// reset
AssertFalse(fbFlutterDet.bExceededFlipMax, 'false exceeded');
25:
// lose a few cycles on reset.
AssertTrue(fbFlutterDet.bExceededFlipMax, 'exceeded flag not present');
END_CASE
IF fbTestTimer.Q THEN
TEST_FINISHED();
END_IF
END_METHOD
METHOD TestFlutterResolution
VAR_INST
fbTestTimer : TON := (PT := T#200ms);
fbFlutterDetExceedResolution : FB_FlutterDetection;
fbFlutterDetMaxResolution : FB_FlutterDetection;
nCycleTime : UDINT;
nCalcCycleTime : TIME;
nNumCycles : UDINT := 4;
bVarToMonitor : BOOL := TRUE;
END_VAR
(*Test the max flips that can be detected, should be number of cycles - 1*)
TEST('TestFlutterResolution');
fbTestTimer(IN := TRUE);
nCycleTime := _TaskInfo[GETCURTASKINDEXEX()].CycleTime;
nCycleTime := nCycleTime / 10000; //convert to ms
nCalcCycleTime := UDINT_TO_TIME(nCycleTime * nNumCycles);
fbFlutterDetExceedResolution(bVarToMonitor:=bVarToMonitor, fPastTime:=nCalcCycleTime, nMaxFlipsAllowed:=nNumCycles);
fbFlutterDetMaxResolution(bVarToMonitor:=bVarToMonitor, fPastTime:=nCalcCycleTime, nMaxFlipsAllowed:=nNumCycles - 1);
bVarToMonitor := NOT bVarToMonitor;
IF fbTestTimer.Q THEN
assertFalse(fbFlutterDetExceedResolution.bExceededFlipMax,'Flutter shouldnt be detected');
assertTrue(fbFlutterDetMaxResolution.bExceededFlipMax,'Flutter not detected');
TEST_FINISHED();
END_IF
END_METHOD
- Related:
FB_GetPLCHostname
FUNCTION_BLOCK FB_GetPLCHostname
VAR_INPUT
bEnable : BOOL;
tRetryDelay : TIME := T#10s;
END_VAR
VAR_OUTPUT
sHostname : T_MaxString;
bDone : BOOL;
bError : BOOL;
END_VAR
VAR
fbGetHostName : FB_GetHostName;
tRetry : TON;
bReset : BOOL;
bInitialized : BOOL := FALSE;
END_VAR
IF bEnable THEN
fbGetHostName.sNetID := '';
IF NOT bInitialized OR (tRetry.Q AND NOT bDone) THEN
bReset := TRUE;
bInitialized := TRUE;
fbGetHostName(bExecute:=FALSE);
END_IF
tRetry(IN:=bReset, PT:=tRetryDelay);
bReset := FALSE;
IF NOT bDone THEN
fbGetHostName(bExecute:=TRUE, bError=>bError);
IF NOT (fbGetHostName.bBusy OR bError) THEN
sHostname := fbGetHostName.sHostName;
bDone := TRUE;
END_IF
END_IF
END_IF
END_FUNCTION_BLOCK
FB_GetPLCIPAddress
FUNCTION_BLOCK FB_GetPLCIPAddress
VAR_INPUT
bEnable : BOOL;
tRetryDelay : TIME := T#10s;
END_VAR
VAR_OUTPUT
sIPAddress : STRING(15);
bDone : BOOL;
bError : BOOL;
END_VAR
VAR
fbGetAdapterIP : FB_GetAdaptersInfo := (bExecute := TRUE, sNetID := ''); // Acquire IP of the correct adapter
iIndex : UDINT;
tRetry : TON;
bReset : BOOL;
bInitialized : BOOL := FALSE;
END_VAR
IF bEnable THEN
IF NOT bInitialized OR (tRetry.Q AND NOT bDone) THEN
bReset := TRUE;
bInitialized := TRUE;
fbGetAdapterIP(bExecute:=FALSE);
END_IF
tRetry(IN:=bReset, PT:=tRetryDelay);
bReset := FALSE;
IF NOT bDone THEN
fbGetAdapterIP(bExecute:=TRUE, bError=>bError);
IF NOT (fbGetAdapterIP.bBusy or fbGetAdapterIP.bError) THEN
FOR iIndex := 0 TO MAX_LOCAL_ADAPTERS DO
IF FIND(fbGetAdapterIP.arrAdapters[iIndex].sIpAddr, GVL_Logger.sIpTidbit) <> 0 THEN
sIPAddress := fbGetAdapterIP.arrAdapters[iIndex].sIpAddr;
bDone := TRUE;
EXIT;
END_IF
END_FOR
END_IF
END_IF
END_IF
END_FUNCTION_BLOCK
- Related:
FB_Index
(* Index FB
A. Wallace 2016-9-3
Why doesn't beckhoff have this as a builtin type?
Use this thing to have a simple indexer with rollover.
*)
FUNCTION_BLOCK FB_Index
VAR_INPUT
{attribute 'naming' := 'off'}
LowerLimit : INT := 1; //Incrementer will rollver over to this value (and initialize to this value)
ValInc : INT := 1; //Incrementer increments by this value
UpperLimit : INT := 1; //Incrementer will rollover at this value to lower limit
{attribute 'naming' := 'off'}
END_VAR
VAR_OUTPUT
END_VAR
VAR
nVal : INT := LowerLimit; //Internal incrementer value, initialized to LowerLimit
END_VAR
{analysis -2} //Only the methods and actions are needed
END_FUNCTION_BLOCK
ACTION Dec:
nVal := nVal - ValInc;
IF nVal < LowerLimit THEN nVal := UpperLimit; END_IF
END_ACTION
ACTION Inc:
// Dont use this, use ValInc
nVal := nVal + ValInc;
IF nVal > UpperLimit THEN nVal := LowerLimit; END_IF
END_ACTION
//Decrement the counter and return new value
METHOD DecVal : INT
VAR_INPUT
END_VAR
Dec();
DecVal := nVal;
END_METHOD
//Increment the counter and return new value
METHOD PUBLIC IncVal : INT
VAR_INPUT
END_VAR
Inc();
IncVal := nVal;
END_METHOD
FB_LED
FUNCTION_BLOCK FB_LED
(*
Reads a percentage of illumination determined by the user and converts it to a raw value
to send to the terminal output via the FB_AnalogOutput.
The determination of the full scale raw value (FSV) is calculated via the iTermBits,
which is setup as an input variable to be set according to the situation. This value
is bounded by the FSV of the terminal set by the Beckhoff architecture: (2^15 - 1) = 32767.
Through the configurable max raw value sent to the terminal output, this LED function block
is applicable to a wider variety of hardware: whether it be simple Analog Voltage control,
PWM voltage output, or current controlled output.
As an initial application, this FB will be instituted for systems of vaccum chamber LED
illuminators on TMO endstations, which are rated for 12 V max. They will be dimmed via the
EL2502 terminal 24 V PWM output voltage control from 0-50% duty cycle.
2022-5-03 Maarten Thomas-Bosum
*)
VAR_INPUT
{attribute 'pytmc' := '
pv: NAME
io: io
field: DESC Descriptive name for the LED
autosave_pass0: VAL DESC
'}
ledName : STRING;
iTermBits : UINT;
{attribute 'pytmc' := '
pv: ILL:PCT
field: EGU %
'}
fIlluminatorPercent: LREAL;
{attribute 'pytmc' := '
pv: PWR
field: ZNAM OFF
field: ONAM ON
'}
bLedPower AT %Q*: BOOL;
END_VAR
VAR
iIlluminatorINT AT %Q*: INT;
fbSetIllPercent: FB_AnalogOutput;
END_VAR
// Illuminator conversion to percentage
fbSetIllPercent(
fReal:=fIlluminatorPercent,
fSafeMax:=100,
fSafeMin:=0,
iTermBits:=iTermBits,
fTermMax:=100,
fTermMin:=0,
iRaw=>iIlluminatorINT);
IF fIlluminatorPercent > 0 THEN
bLedPower := TRUE;
ELSE
bLEDPower := FALSE;
END_IF
END_FUNCTION_BLOCK
- Related:
FB_Listener
FUNCTION_BLOCK FB_Listener EXTENDS FB_ListenerBase
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
nEventIdx : UINT := 0;
nPendingEvents : UINT := 0;
{attribute 'pytmc' := '
pv: LogToVisualStudio
io: io
'}
bLogToVisualStudio : BOOL := FALSE;
{attribute 'pytmc' := '
pv: MessagesSent
io: i
'}
nCntMessagesSent : UDINT := 0;
{attribute 'pytmc' := '
pv: AlarmsRaised
io: i
'}
nCntAlarmsRaised : UDINT := 0;
{attribute 'pytmc' := '
pv: AlarmsConfirmed
io: i
'}
nCntAlarmsConfirmed : UDINT := 0;
{attribute 'pytmc' := '
pv: AlarmsCleared
io: i
'}
nCntAlarmsCleared : UDINT := 0;
{attribute 'pytmc' := '
pv: MinSeverity
io: io
'}
eMinSeverity : TcEventSeverity;
{attribute 'analysis' := '-33'}
{attribute 'pytmc' := '
pv: Log
'}
stEventInfo : REFERENCE TO ST_LoggingEventInfo;
stPendingEvents : ARRAY [0..nMaxEvents - 1] OF ST_PendingEvent;
ipMessageConfig : ITcEventFilterConfig;
fbSocket : POINTER TO FB_ConnectionlessSocket;
bConfigured : BOOL := FALSE;
END_VAR
VAR_IN_OUT
END_VAR
VAR CONSTANT
// The maximum number of events allowed *per-cycle*
nMaxEvents : UINT := 10;
END_VAR
END_FUNCTION_BLOCK
(*
Configure an event class + severity
*)
METHOD Configure : HRESULT
VAR_INPUT
i_EventClass : GUID;
i_MinSeverity : TcEventSeverity := TcEventSeverity.Verbose;
i_fbSocket : POINTER TO FB_ConnectionlessSocket;
END_VAR
VAR_INST
bSubscribed : BOOL := FALSE;
END_VAR
IF bSubscribed THEN
Unsubscribe();
END_IF
THIS^.Subscribe(ADR(ipMessageConfig), 0);
bSubscribed := TRUE;
eMinSeverity := i_MinSeverity;
fbSocket := i_fbSocket;
IF (ipMessageConfig = 0) THEN
Configure := 1;
bConfigured := FALSE;
ELSE
ipMessageConfig.AddEventClass(i_EventClass, i_MinSeverity);
Configure := 0;
bConfigured := TRUE;
END_IF
END_METHOD
METHOD OnAlarmCleared
VAR_INPUT
fbEvent : REFERENCE TO FB_TcEvent;
END_VAR
(* Callback run from THIS^.Execute() *)
nCntAlarmsCleared := nCntAlarmsCleared + 1;
StoreEvent(fbEvent, eEventType:=E_LogEventType.AlarmCleared);
END_METHOD
METHOD OnAlarmConfirmed
VAR_INPUT
fbEvent : REFERENCE TO FB_TcEvent;
END_VAR
(* Callback run from THIS^.Execute() *)
nCntAlarmsConfirmed := nCntAlarmsConfirmed + 1;
StoreEvent(fbEvent, eEventType:=E_LogEventType.AlarmConfirmed);
END_METHOD
METHOD OnAlarmRaised
VAR_INPUT
fbEvent : REFERENCE TO FB_TcEvent;
END_VAR
(* Callback run from THIS^.Execute() *)
nCntAlarmsRaised := nCntAlarmsRaised + 1;
StoreEvent(fbEvent, eEventType:=E_LogEventType.AlarmRaised);
END_METHOD
METHOD OnMessageSent
VAR_INPUT
fbEvent : REFERENCE TO FB_TcEvent;
END_VAR
(* Callback run from THIS^.Execute() *)
nCntMessagesSent := nCntMessagesSent + 1;
StoreEvent(fbEvent, eEventType:=E_LogEventType.MessageSent);
END_METHOD
METHOD PublishEvents : HRESULT
VAR
nEvent : UINT;
stPendingEvent : REFERENCE TO ST_PendingEvent;
stEventInfo : REFERENCE TO ST_LoggingEventInfo;
fbRequestEventText : REFERENCE TO FB_RequestEventText;
END_VAR
VAR_INST
fbJson : FB_JsonSaxWriter;
fbJsonDataType : FB_JsonReadWriteDataType;
sJsonDoc : STRING(10000);
END_VAR
IF nPendingEvents = 0 THEN
RETURN;
END_IF
FOR nEvent := 0 TO nMaxEvents - 1 DO
stPendingEvent REF= stPendingEvents[nEvent];
IF NOT stPendingEvent.bInUse THEN
CONTINUE;
END_IF
fbRequestEventText REF= stPendingEvent.fbRequestEventText;
stEventInfo REF= stPendingEvent.stEventInfo;
IF fbRequestEventText.bError THEN
stEventInfo.Msg := '(Unable to retrieve message)';
ELSIF NOT fbRequestEventText.bBusy THEN
fbRequestEventText.GetString(stEventInfo.msg, SIZEOF(stEventInfo.msg));
ELSE
CONTINUE;
END_IF
IF bConfigured THEN
stEventInfo.plc := GVL_Logger.sPlcHostname;
// Generate the JSON message
fbJson.ResetDocument();
fbJsonDataType.AddJsonValueFromSymbol(fbJson, 'ST_LoggingEventInfo', SIZEOF(stEventInfo), ADR(stEventInfo));
fbJson.CopyDocument(sJsonDoc, SIZEOF(sJsonDoc));
SendMessage(sMessage:=ADR(sJsonDoc));
END_IF
// Mark as not in use, and fill in this event in the next StoreEvent call
nPendingEvents := nPendingEvents - 1;
stPendingEvent.bInUse := FALSE;
nEventIdx := nEvent;
END_FOR
END_METHOD
METHOD SendMessage : HRESULT
VAR_INPUT
sMessage : POINTER TO STRING;
END_VAR
VAR
sLogStr : T_MaxString;
END_VAR
(* For subclasses to override, if necessary *)
IF sMessage = 0 THEN
RETURN;
END_IF
// Optionally log it to Visual Studio's message list
IF bLogToVisualStudio THEN
// Keep the message length under 255 (extended string function for LEFT/MID do not exist)
STRNCPY(ADR(sLogStr), sMessage, MIN(220, SIZEOF(sLogStr)));
ADSLOGSTR(
msgCtrlMask := ADSLOG_MSGTYPE_HINT,
msgFmtStr := '[Logger JSON Debug] %s',
strArg := sLogStr
);
END_IF
IF fbSocket <> 0 THEN
// And send it along to logstash
F_SendUDPMessage(sMessage:=sMessage, fbSocket:=fbSocket^,
sHost:=GVL_Logger.cLogHost, iPort:=GVL_Logger.iLogPort);
END_IF
END_METHOD
METHOD PRIVATE StoreEvent : HRESULT
VAR_INPUT
fbEvent : REFERENCE TO FB_TcEvent;
eEventType : E_LogEventType;
END_VAR
VAR
stPendingEvent : REFERENCE TO ST_PendingEvent;
stEventInfo : REFERENCE TO ST_LoggingEventInfo;
nFailures : UINT := 0;
END_VAR
IF fbEvent.eSeverity < eMinSeverity THEN
// Ignore all messages below the minimum severity
RETURN;
ELSIF NOT __ISVALIDREF(fbEvent) THEN
RETURN;
END_IF
// Find the next slot to use in stPendingEvents
WHILE stPendingEvents[nEventIdx].bInUse AND nFailures < nMaxEvents DO
nFailures := nFailures + 1;
IF ((nEventIdx := (nEventIdx + 1)) = nMaxEvents) THEN
nEventIdx := 0;
END_IF
END_WHILE
IF (nFailures = nMaxEvents) THEN
ADSLOGSTR(
msgCtrlMask := ADSLOG_MSGTYPE_ERROR,
msgFmtStr := 'Logging message buffer full (%s)',
strArg := UINT_TO_STRING(nMaxEvents),
);
RETURN;
END_IF
nPendingEvents := nPendingEvents + 1;
nCntMessagesSent := nCntMessagesSent + 1;
stPendingEvent REF= stPendingEvents[nEventIdx];
stEventInfo REF= stPendingEvent.stEventInfo;
stPendingEvent.bInUse := TRUE;
stEventInfo.id := fbEvent.nEventId;
stEventInfo.event_class := GUID_TO_STRING(fbEvent.EventClass);
stEventInfo.severity := fbEvent.eSeverity;
stEventInfo.ts := F_ConvertTicksToUnixTimestamp(fbEvent.nTimestamp);
stEventInfo.source := fbEvent.ipSourceInfo.sName;
stEventInfo.event_type := eEventType;
fbEvent.GetJsonAttribute(stEventInfo.json, SIZEOF(stEventInfo.json));
stPendingEvent.fbRequestEventText.Request(eventClass:=fbEvent.EventClass, nEventId:=fbEvent.nEventId, nLangId:=1033, ipArgs:=fbEvent.ipArguments);
END_METHOD
{attribute 'analysis' := '-33'}
PROPERTY PUBLIC LogToVisualStudio : BOOL
VAR
END_VAR
LogToVisualStudio := bLogToVisualStudio;
END_PROPERTY
{attribute 'analysis' := '-33'}
PROPERTY PUBLIC LogToVisualStudio : BOOL
VAR
bValue : BOOL;
END_VAR
THIS^.bLogToVisualStudio := bValue;
END_PROPERTY
FB_LogHandler
FUNCTION_BLOCK FB_LogHandler
VAR_INPUT
{attribute 'pytmc' := '
pv: ADS
'}
fbTcAdsListener : FB_Listener;
{attribute 'pytmc' := '
pv: Router
'}
fbTcRouterListener : FB_Listener;
{attribute 'pytmc' := '
pv: RTime
'}
fbTcRTimeListener : FB_Listener;
{attribute 'pytmc' := '
pv: System
'}
fbTcSystemListener : FB_Listener;
{attribute 'pytmc' := '
pv: Windows
'}
fbWindowsListener : FB_Listener;
{attribute 'pytmc' := '
pv: LCLS
'}
fbLCLSListener : FB_Listener;
END_VAR
VAR_OUTPUT
END_VAR
VAR
bInitialized : BOOL := FALSE;
bReadyToLog : BOOL := FALSE;
rtFirstLog : R_TRIG;
fbGetHostName : FB_GetPLCHostname;
fbGetIP : FB_GetPLCIPAddress;
fbListener : REFERENCE TO FB_Listener;
fbListeners : ARRAY [0..nNumListeners - 1] OF POINTER TO FB_Listener;
// Default minimum severity for subscriptions
eMinSeverity : TcEventSeverity := TcEventSeverity.Verbose;
{attribute 'naming' := 'omit'}
rtReset : R_TRIG; //Reset trigger
bReset : BOOL;
fbSocket : FB_ConnectionlessSocket;
nI : UINT;
SocketEnable : BOOL;
ctuSocketError : CTU := (PV:=3); // Circuit breaker for socket errors. 3 errors before it stops.
tRetryConnection : TON := (PT:=T#1h); // Retry after an hour
tofTrickleBreakerPre : TOF := (PT:=T#1s);
tonTrickleBreaker : TON := (PT := GVL_Logger.nTrickleTripTime);
bTripCon : BOOL;
END_VAR
VAR CONSTANT
nNumListeners : UINT := 6;
END_VAR
IF NOT bInitialized THEN
bInitialized := TRUE;
fbTcAdsListener.Configure(i_EventClass:=TC_EVENT_CLASSES.TcGeneralAdsEventClass, i_MinSeverity:=eMinSeverity, i_fbSocket:=ADR(fbSocket));
fbTcRouterListener.Configure(i_EventClass:=TC_EVENT_CLASSES.TcRouterEventClass, i_MinSeverity:=eMinSeverity, i_fbSocket:=ADR(fbSocket));
fbTcRTimeListener.Configure(i_EventClass:=TC_EVENT_CLASSES.TcRTimeEventClass, i_MinSeverity:=eMinSeverity, i_fbSocket:=ADR(fbSocket));
fbTcSystemListener.Configure(i_EventClass:=TC_EVENT_CLASSES.TcSystemEventClass, i_MinSeverity:=eMinSeverity, i_fbSocket:=ADR(fbSocket));
fbWindowsListener.Configure(i_EventClass:=TC_EVENT_CLASSES.Win32EventClass, i_MinSeverity:=eMinSeverity, i_fbSocket:=ADR(fbSocket));
fbLCLSListener.Configure(i_EventClass:=TC_EVENT_CLASSES.LCLSGeneralEventClass, i_MinSeverity:=eMinSeverity, i_fbSocket:=ADR(fbSocket));
fbListeners[0] := ADR(fbTcAdsListener);
fbListeners[1] := ADR(fbTcRouterListener);
fbListeners[2] := ADR(fbTcRTimeListener);
fbListeners[3] := ADR(fbTcSystemListener);
fbListeners[4] := ADR(fbWindowsListener);
fbListeners[5] := ADR(fbLCLSListener);
END_IF
fbGetHostName(
bEnable := TRUE,
sHostname => GVL_Logger.sPlcHostname,
);
fbGetIP(
bEnable := TRUE,
sIPAddress => fbSocket.sLocalHost
);
(* Ensure the socket is ready for when JSON documents are emitted *)
rtReset(CLK:=bReset);
IF (rtReset.Q AND fbSocket.bEnable) THEN
fbSocket(bEnable:=FALSE);
END_IF
// Disable fbSocket if too many errors occur
ctuSocketError(CU:=fbSocket.bError, RESET:=tRetryConnection.Q OR rtReset.Q);
SocketEnable R= ctuSocketError.Q;
// Retry an hour later
tRetryConnection(IN:=ctuSocketError.Q);
SocketEnable S= tRetryConnection.Q OR rtReset.Q;
fbSocket(
nLocalPort:=0,
bEnable:=fbGetIP.bDone,
nMode:=CONNECT_MODE_ENABLEDBG,
);
bReadyToLog := (
fbGetHostName.bDone AND
fbGetIP.bDone AND
bInitialized AND
fbSocket.bEnable AND
NOT fbSocket.bError AND
fbSocket.eState = E_SocketConnectionlessState.eSOCKET_CREATED
);
rtFirstLog(CLK:=bReadyToLog);
IF rtFirstLog.Q THEN
fbRootLogger(sMsg:='Logging system online', eSevr:=TcEventSeverity.Info,
eSubsystem:=E_Subsystem.NILVALUE);
END_IF
CircuitBreaker();
(* Poke all of the listeners *)
FOR nI := 0 TO nNumListeners - 1 DO
fbListener REF= fbListeners[nI]^;
fbListener.Execute();
fbListener.PublishEvents();
END_FOR
END_FUNCTION_BLOCK
ACTION CircuitBreaker:
// Global log circuit breaker
(*
Logic explanation
We want to trip if there is a constant stream of messages being emitted by this PLC. We also
only want the noisy offenders to trip. To target them we set a global trickle tripped flag
using this logic here. Then each individual FB_LogMessage evaluates itself to see if it's
sending a message too frequently (ie. it's being called to often).
This logic is attempting to implement the following:
1. Trip if the total events exceeds the nTrickleThreshold for >10s
2. Sustain the timer if the event count drops for a handful of cycles since usually a cycle amounts to 10ms, losing a few
should not stop the trickle timer.
*)
bTripCon := GVL_Logger.nGlobAccEvents >0;
tofTrickleBreakerPre(IN:=bTripCon);
tonTrickleBreaker(IN:=tofTrickleBreakerPre.Q);
GVL_Logger.bTrickleTripped S= tonTrickleBreaker.Q AND bTripCon;
GVL_Logger.nGlobAccEvents := 0; // reset the count for the next cycle
END_ACTION
FB_LogMessage
{attribute 'reflection'}
FUNCTION_BLOCK FB_LogMessage
VAR_INPUT
sMsg : T_MaxString; // Message to send
eSevr : TcEventSeverity := TcEventSeverity.Verbose;
eSubsystem : E_Subsystem; // Subsystem
sJson : STRING(7000) := '{}'; // JSON to add to the message
//Circuit breaker settings
nMinTimeViolationAcceptable : INT := GVL_Logger.nMinTimeViolationAcceptable; // How many times the min. time can be violated before the CB trips
nLocalTripThreshold : TIME := GVL_Logger.nLocalTripThreshold; // Minimum time between calls allowed, pairs with nMinTimeViolationAcceptable
nTrickleTripThreshold : TIME := GVL_Logger.nLocalTrickleTripThreshold; // Trickle trip, activated by global threshold, should be >> LocalTripThreshold
nTripResetPeriod : TIME := GVL_Logger.nTripResetPeriod; // Time for auto-reset
bEnableAutoReset : BOOL := TRUE; //Enable circuit breaker auto-reset (true by default)
END_VAR
VAR_OUTPUT
END_VAR
VAR
bInitialized : BOOL := FALSE;
bInitFailed : BOOL := FALSE;
sSubsystemSource : STRING;
fbMessage : REFERENCE TO FB_TcMessage;
fbMessages : ARRAY [0..4] OF FB_TcMessage;
fbSource : FB_TcSourceInfo;
ipResultMessage : I_TcMessage;
hr : HRESULT;
hrLastInternalError : HRESULT;
eTraceLevel : TcEventSeverity := TcEventSeverity.Verbose;
bFirstCall : BOOL := TRUE;
{attribute 'instance-path'}
{attribute 'noinit'}
sPath : T_MaxString;
// Circuit breaker
///////////////////////////////
nTimesViolated : INT;
LastCallTime : ULINT;
CurrentCallTime : ULINT;
DeltaSinceLastCall : ULINT;
WhenTripsCleared : ULINT;
ftTrippedReleased : F_TRIG;
bLocalTrickleTripped : BOOL;
bLocalTripped : BOOL;
{attribute 'pytmc' := '
pv: Tripped
io: i
field: DESC Log message FB tripped
'}
bTripped : BOOL; // Won't emit messages if true
{attribute 'pytmc' := '
pv: Reset
io: o
field: DESC Rising-edge reset of trip
'}
bResetBreaker : BOOL;
rtResetBreaker : R_TRIG;
rtTripped : R_TRIG;
////////////////////////////////////////////
END_VAR
IF NOT bInitialized AND NOT bInitFailed THEN
hr := fbMessages[TC_EVENTS.LCLSGeneralEventClass.Verbose.nEventId].CreateEx(TC_EVENTS.LCLSGeneralEventClass.Verbose, 0 (*fbSource*) );
IF FAILED(hr) THEN
bInitFailed := TRUE;
hrLastInternalError := hr;
END_IF
hr := fbMessages[TC_EVENTS.LCLSGeneralEventClass.Warning.nEventId].CreateEx(TC_EVENTS.LCLSGeneralEventClass.Warning, 0 (*fbSource*) );
IF FAILED(hr) THEN
bInitFailed := TRUE;
hrLastInternalError := hr;
END_IF
hr := fbMessages[TC_EVENTS.LCLSGeneralEventClass.Info.nEventId].CreateEx(TC_EVENTS.LCLSGeneralEventClass.Info, 0 (*fbSource*) );
IF FAILED(hr) THEN
bInitFailed := TRUE;
hrLastInternalError := hr;
END_IF
hr := fbMessages[TC_EVENTS.LCLSGeneralEventClass.Error.nEventId].CreateEx(TC_EVENTS.LCLSGeneralEventClass.Error, 0 (*fbSource*) );
IF FAILED(hr) THEN
bInitFailed := TRUE;
hrLastInternalError := hr;
END_IF
hr := fbMessages[TC_EVENTS.LCLSGeneralEventClass.Critical.nEventId].CreateEx(TC_EVENTS.LCLSGeneralEventClass.Critical, 0 (*fbSource*) );
IF FAILED(hr) THEN
bInitFailed := TRUE;
hrLastInternalError := hr;
END_IF
IF bInitFailed THEN
ADSLOGSTR(
msgCtrlMask := ADSLOG_MSGTYPE_ERROR,
msgFmtStr := '[LOGGER] Initialization failed in %s',
strArg := sPath,
);
ELSE
bInitialized := TRUE;
END_IF
END_IF
IF bInitFailed THEN
RETURN;
END_IF
///////////////////////////////////////
// Log message circuit breaker
CircuitBreaker();
IF bTripped AND NOT rtTripped.Q THEN RETURN; END_IF // Pass on the first one to deliver the message we're going silent
///////////////////////////////////////////////////////////
// Map the message severity to the LCLSGeneralEventClass:
CASE eSevr OF
TcEventSeverity.Verbose: fbMessage REF= fbMessages[TC_EVENTS.LCLSGeneralEventClass.Verbose.nEventId];
TcEventSeverity.Warning: fbMessage REF= fbMessages[TC_EVENTS.LCLSGeneralEventClass.Warning.nEventId];
TcEventSeverity.Info: fbMessage REF= fbMessages[TC_EVENTS.LCLSGeneralEventClass.Info.nEventId];
TcEventSeverity.Error: fbMessage REF= fbMessages[TC_EVENTS.LCLSGeneralEventClass.Error.nEventId];
TcEventSeverity.Critical: fbMessage REF= fbMessages[TC_EVENTS.LCLSGeneralEventClass.Critical.nEventId];
ELSE
RETURN;
END_CASE
CASE eSubsystem OF
E_Subsystem.FIELDBUS: sSubsystemSource := '/Fieldbus';
E_Subsystem.MOTION: sSubsystemSource := '/Motion';
E_Subsystem.MPS: sSubsystemSource := '/MPS';
E_Subsystem.SDS: sSubsystemSource := '/SDS';
E_Subsystem.VACUUM: sSubsystemSource := '/Vacuum';
E_Subsystem.OPTICS: sSubsystemSource := '/Optics';
ELSE
sSubsystemSource := '/Unknown';
END_CASE
// Clearing the source here will clear the event GUID, causing the message to not be resolved.
// However, we can change the name as desired:
//fbSource.Clear();
fbSource.sName := CONCAT(sPath, sSubsystemSource);
ipResultMessage := fbMessage;
hr := fbMessage.CreateEx(stEventEntry:=ipResultMessage.stEventEntry, ipSourceInfo:=fbSource);
// This is where the message text gets appended:
fbMessage.ipArguments.Clear();
IF rtTripped.Q THEN
fbMessage.ipArguments.AddString('Logging circuit breaker tripped, this will be the last message from this element for a while...');
ELSIF NOT bTripped THEN
fbMessage.ipArguments.AddString(sMsg);
END_IF
IF LEN(sJson) = 0 THEN
// Ensure there's a valid JSON string here
sJson := '{}';
END_IF
fbMessage.SetJsonAttribute(sJson);
// For a final format of:
// 'Path.to.FB_LogMessage/Subsystem': {Unknown,Error,Warning,Verbose} (message)
// We want to send 1 more message when we trip
IF NOT FAILED(hr) AND fbMessage.eSeverity >= eTraceLevel AND (NOT bTripped OR rtTripped.Q) THEN
hr := fbMessage.Send(0);
END_IF
IF FAILED(hr) THEN
hrLastInternalError := hr;
END_IF
END_FUNCTION_BLOCK
ACTION CircuitBreaker:
GVL_Logger.nGlobAccEvents := GVL_Logger.nGlobAccEvents + 1;
CurrentCallTime := F_GetTaskTime();
IF bFirstCall THEN
DeltaSinceLastCall := 16#FFFF_FFFF;
bFirstCall := FALSE;
ELSE
DeltaSinceLastCall := CurrentCallTime - LastCallTime;
END_IF
LastCallTime := CurrentCallTime;
ftTrippedReleased(CLK:=bLocalTripped OR bLocalTrickleTripped);
IF ftTrippedReleased.Q THEN
WhenTripsCleared := CurrentCallTime;
END_IF
rtResetBreaker(CLK:=bResetBreaker OR
bEnableAutoReset AND (CurrentCallTime - WhenTripsCleared > TIME_TO_100NS(nTripResetPeriod)) );
IF rtResetBreaker.Q THEN
// bLocalTrickleTripped := FALSE;
//bLocalTripped := FALSE;
bTripped := FALSE;
//nTimesViolated := 0;
END_IF
bResetBreaker := FALSE;
IF DeltaSinceLastCall < TIME_TO_100NS(nLocalTripThreshold) THEN
nTimesViolated := MIN(nTimesViolated + 1, nMinTimeViolationAcceptable+1);
ELSE
nTimesViolated := MAX(nTimesViolated - 1, 0);
END_IF
bLocalTripped := nTimesViolated > nMinTimeViolationAcceptable;
bLocalTrickleTripped := DeltaSinceLastCall < TIME_TO_100NS(nTrickleTripThreshold) AND GVL_LOGGER.bTrickleTripped;
bTripped S= bLocalTrickleTripped OR bLocalTripped;
rtTripped(CLK:=bTripped);
END_ACTION
- Related:
FB_LREALBuffer
FUNCTION_BLOCK FB_LREALBuffer
(*
An example use of FB_DataBuffer for the likely most-common use case.
2019-10-09 Zachary Lentz
*)
VAR_INPUT
// If TRUE, we'll accumulate a value on this cycle.
bExecute: BOOL;
// The value to accumulate.
fInput: LREAL;
END_VAR
VAR_OUTPUT
arrOutput: ARRAY [1..1000] OF LREAL;
bNewArray: BOOL;
END_VAR
VAR
arrPartial: ARRAY [1..1000] OF LREAL;
fbDataBuffer: FB_DataBuffer;
END_VAR
fbDataBuffer(
bExecute := bExecute,
pInputAdr := ADR(fInput),
iInputSize := SIZEOF(fInput),
iElemCount := 1000,
pPartialAdr := ADR(arrPartial),
pOutputAdr := ADR(arrOutput),
bNewArray => bNewArray);
END_FUNCTION_BLOCK
- Related:
FB_LREALFromEPICS
(*
Function block to link an analog value from EPICS to an LREAL on the PLC
Usage:
{attribute 'pytmc' := '
pv: INTERNAL:RECORD
link: PV:NAME:TO:LINK:TO
'}
fbLinkedValue1 : FB_LREALFromEPICS;
Such that when PV:NAME:TO:LINK:TO changes in EPICS, the INTERNAL:RECORD will be used to
push a value through to the PLC with this function block.
As this block takes care of IOC heartbeat signals and monitors the link and value severity,
the end-user should then only have to look at `.bValid` and `.fValue`. These are guaranteed to
be up-to-date and valid within `tTimeout` seconds.
*)
FUNCTION_BLOCK FB_LREALFromEPICS
VAR_INPUT
iMaximumValidSeverity : INT := 1;
END_VAR
VAR_OUTPUT
bValid : BOOL;
fValue : LREAL;
END_VAR
VAR
iValueInvalidate : POINTER TO ULINT;
tonValueTimeout : TON;
tonSeverityTimeout : TON;
fLastValidValue : LREAL;
iLastValidSeverity : INT;
{attribute 'pytmc' := '
pv: EPICSLink
link:
field: DESC Internal variable used to monitor EPICS PV in PLC
'}
fPLCInternalValue : LREAL;
// Use special link syntax for now to get EPICSLink.SEVR here:
{attribute 'pytmc' := '
pv: EPICSLink:LinkSeverity
link: *EPICSLink.SEVR
field: DESC Internal variable used to monitor EPICS PV severity in PLC
'}
iPLCInternalSeverity : INT;
END_VAR
VAR CONSTANT
// The timeout will trip after `tTimeout` if EPICS doesn't write in that time period:
tTimeout : TIME := T#2S;
NAN_VALUE : ULINT := 16#7f_ff_ff_ff__ff_ff_ff_ff;
END_VAR
iValueInvalidate := ADR(fPLCInternalValue);
IF iPLCInternalSeverity <> -1 THEN
// New severity value
iLastValidSeverity := iPLCInternalSeverity;
iPLCInternalSeverity := -1;
// Reset the timer
tonSeverityTimeout(IN:=FALSE);
tonSeverityTimeout(IN:=TRUE, PT:=tTimeout);
END_IF
IF iValueInvalidate^ <> NAN_VALUE THEN
// New value from EPICS
fLastValidValue := fPLCInternalValue;
iValueInvalidate^ := NAN_VALUE;
// Reset the timer
tonValueTimeout(IN:=FALSE);
tonValueTimeout(IN:=TRUE, PT:=tTimeout);
END_IF
tonValueTimeout();
tonSeverityTimeout();
bValid := (NOT tonValueTimeout.Q) AND
(NOT tonSeverityTimeout.Q) AND
(iLastValidSeverity <= iMaximumValidSeverity);
fValue := fLastValidValue;
END_FUNCTION_BLOCK
FB_STRINGFromEPICS
(*
Function block to link an analog value from EPICS to a STRING on the PLC
Usage:
{attribute 'pytmc' := '
pv: INTERNAL:RECORD
link: PV:NAME:TO:LINK:TO.VAL@
'}
fbLinkedValue1 : FB_STRINGFromEPICS;
Such that when PV:NAME:TO:LINK:TO.VAL$ changes in EPICS, the INTERNAL:RECORD will be used to
push a value through to the PLC with this function block.
The usage of "@" above has several layers of complexity, which are not strictly necessary to
understand in order to use this function block. The reasons are as follows:
1. TwinCAT does not allow the "$" symbol to be used in pragmas. pytmc uses "@" as an
alternate character for "$" as the latter is more frequently useful.
2. The "$" is used as a suffix for EPICS string PVs where accessing strings over
the standard 40 character length is desirable.
3. Combining the above, using "PV.VAL@" we can direct EPICS to use long string
handling over the Channel Access link to the link PV ("PV.VAL$").
As this block takes care of IOC heartbeat signals and monitors the link and value severity,
the end-user should then only have to look at `.bValid` and `.sValue`. These are guaranteed to
be up-to-date and valid within `tTimeout` seconds.
*)
FUNCTION_BLOCK FB_STRINGFromEPICS
VAR_INPUT
iMaximumValidSeverity : INT := 1;
END_VAR
VAR_OUTPUT
bValid : BOOL;
sValue : STRING;
END_VAR
VAR
tonValueTimeout : TON;
tonSeverityTimeout : TON;
sLastValidValue : STRING;
iLastValidSeverity : INT;
{attribute 'pytmc' := '
pv: EPICSLink
link:
field: DESC Internal variable used to monitor EPICS PV in PLC
'}
sPLCInternalValue : STRING;
// Use special link syntax for now to get EPICSLink.SEVR here:
{attribute 'pytmc' := '
pv: EPICSLink:Sevr
link: *EPICSLink.SEVR
field: DESC Internal variable used to monitor EPICS PV severity in PLC
'}
iPLCInternalSeverity : INT;
END_VAR
VAR CONSTANT
// The timeout will trip after `tTimeout` if EPICS doesn't write in that time period:
tTimeout : TIME := T#2S;
// This is an arbitrary extended UUID. If you want to store this value in your IOC
// and use it with this function block - well, too bad.
sUnsetString : STRING := '857be58e-5b82-4731-935f-e0e9cdfe005d-50b69a17-1499-49bc-af7b-084a8b6f63dd';
END_VAR
IF iPLCInternalSeverity <> -1 THEN
// New severity value
iLastValidSeverity := iPLCInternalSeverity;
iPLCInternalSeverity := -1;
// Reset the timer
tonSeverityTimeout(IN:=FALSE);
tonSeverityTimeout(IN:=TRUE, PT:=tTimeout);
END_IF
IF sPLCInternalValue <> sUnsetString THEN
// New value from EPICS
sLastValidValue := sPLCInternalValue;
sPLCInternalValue := sUnsetString;
// Reset the timer
tonValueTimeout(IN:=FALSE);
tonValueTimeout(IN:=TRUE, PT:=tTimeout);
END_IF
tonValueTimeout();
tonSeverityTimeout();
bValid := (NOT tonValueTimeout.Q) AND
(NOT tonSeverityTimeout.Q) AND
(iLastValidSeverity <= iMaximumValidSeverity);
sValue := sLastValidValue;
END_FUNCTION_BLOCK
FB_TempSensor
FUNCTION_BLOCK FB_TempSensor
(*
Handles scaling and default diagnostics for temperature sensors,
such as thermocouples, RTDs, and others.
2020-03-02 Zachary Lentz
*)
VAR_INPUT
// Resolution parameter from the Beckhoff docs. Default is 0.1 for 0.1 degree resolution
fResolution: LREAL := 0.1;
END_VAR
VAR_OUTPUT
{attribute 'pytmc' := '
pv: TEMP
io: input
field: EGU C
field: PREC 2
'}
fTemp: LREAL;
{attribute 'pytmc' := '
pv: CONN
io: input
field: ONAM Connected
field: ZNAM Disconnected
'}
bConnected: BOOL;
{attribute 'pytmc' := '
pv: ERR
io: input
field: ONAM True
field: ZNAM False
'}
bError AT %I*: BOOL := TRUE;
bUnderrange AT %I*: BOOL;
bOverrange AT %I*: BOOL;
END_VAR
VAR
iRaw AT %I*: INT;
END_VAR
// The manual states that we are disconnected if we are both overrange and in an error state
bConnected := NOT (bOverrange AND bError);
fTemp := INT_TO_LREAL(iRaw) * fResolution;
END_FUNCTION_BLOCK
FB_Test_EpicsCentroidMonitor
{attribute 'call_after_init'}
FUNCTION_BLOCK FB_Test_EpicsCentroidMonitor EXTENDS TcUnit.FB_TestSuite
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
END_VAR
TestBasics();
END_FUNCTION_BLOCK
METHOD TestBasics
VAR_INPUT
END_VAR
VAR_INST
fbMonitor : FB_EpicsCentroidMonitor;
nCount : INT := 0;
END_VAR
TEST('Basic');
nCount := 0;
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.0, fY:=0.0, nCount:=nCount, nX_Severity:=0, nY_Severity:=0, nCount_Severity:=0, tLastUpdate:=T#0S);
fbMonitor();
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.1, fY:=0.1, nCount:=nCount, nX_Severity:=0, nY_Severity:=0, nCount_Severity:=0, tLastUpdate:=T#0S);
fbMonitor(fMinimumValidChange:=0.0);
AssertTrue(fbMonitor.bIsUpdating, Message:='Centroid not reporting updating');
TEST_FINISHED();
TEST('Min change');
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.0, fY:=0.0, nCount:=nCount, nX_Severity:=0, nY_Severity:=0, nCount_Severity:=0, tLastUpdate:=T#0S);
fbMonitor(fMinimumValidChange:=0.1, fMaximumFrameTime:=0.2);
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.05, fY:=0.05, nCount:=nCount, nX_Severity:=0, nY_Severity:=0, nCount_Severity:=0, tLastUpdate:=T#0.1S);
fbMonitor(fMinimumValidChange:=0.1, fMaximumFrameTime:=0.2);
AssertFalse(fbMonitor.bIsUpdating, Message:='Centroid update below threshold and is not updating');
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.5, fY:=0.5, nCount:=nCount, nX_Severity:=0, nY_Severity:=0, nCount_Severity:=0, tLastUpdate:=T#0.1S);
fbMonitor(fMinimumValidChange:=0.1, fMaximumFrameTime:=0.2);
AssertTrue(fbMonitor.bIsUpdating, Message:='Centroid update above threshold and is updating');
TEST_FINISHED();
TEST('Severity invalidation');
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.0, fY:=0.0, nCount:=nCount, nX_Severity:=2, nY_Severity:=0, nCount_Severity:=0, tLastUpdate:=T#0.2S);
fbMonitor(fMinimumValidChange:=0.0);
AssertFalse(fbMonitor.bValid, Message:='Invalid data - x severity');
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.1, fY:=0.1, nCount:=nCount, nX_Severity:=0, nY_Severity:=2, nCount_Severity:=0, tLastUpdate:=T#0.2S);
fbMonitor(fMinimumValidChange:=0.0);
AssertFalse(fbMonitor.bValid, Message:='Invalid data - y severity');
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.2, fY:=0.2, nCount:=nCount, nX_Severity:=0, nY_Severity:=0, nCount_Severity:=2, tLastUpdate:=T#0.2S);
fbMonitor(fMinimumValidChange:=0.0);
AssertFalse(fbMonitor.bValid, Message:='Invalid data - count severity');
nCount := nCount + 1;
WriteCentroidValue(fbMonitor:=fbMonitor, fX:=0.0, fY:=0.0, nCount:=nCount, nX_Severity:=0, nY_Severity:=0, nCount_Severity:=0, tLastUpdate:=T#0.1S);
fbMonitor(fMinimumValidChange:=0.0);
AssertTrue(fbMonitor.bValid, Message:='Data valid');
AssertTrue(fbMonitor.bIsUpdating, Message:='Data valid and updating');
TEST_FINISHED();
END_METHOD
METHOD WriteCentroidValue
VAR_IN_OUT
fbMonitor : FB_EpicsCentroidMonitor;
END_VAR
VAR_INPUT
fX : LREAL;
fY : LREAL;
nCount : INT;
nX_Severity : INT := 0;
nY_Severity : INT := 0;
nCount_Severity : INT := 0;
tLastUpdate : TIME;
END_VAR
WRITE_PROTECTED_INT(ADR(fbMonitor.fbCentroidX.iPLCInternalSeverity), nX_Severity);
WRITE_PROTECTED_INT(ADR(fbMonitor.fbCentroidY.iPLCInternalSeverity), nY_Severity);
WRITE_PROTECTED_INT(ADR(fbMonitor.fbArrayCounter.iPLCInternalSeverity), nCount_Severity);
WRITE_PROTECTED_LREAL(ADR(fbMonitor.fbCentroidX.fPLCInternalValue), fX);
WRITE_PROTECTED_LREAL(ADR(fbMonitor.fbCentroidY.fPLCInternalValue), fY);
WRITE_PROTECTED_LREAL(ADR(fbMonitor.fbArrayCounter.fPLCInternalValue), INT_TO_LREAL(nCount));
WRITE_PROTECTED_TIME(ADR(fbMonitor.tLastUpdate), TIME() - tLastUpdate);
END_METHOD
- Related:
FB_Test_EpicsMotorMonitor
{attribute 'call_after_init'}
FUNCTION_BLOCK FB_Test_EpicsMotorMonitor EXTENDS TcUnit.FB_TestSuite
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
END_VAR
TestBasics();
END_FUNCTION_BLOCK
METHOD TestBasics
VAR_INPUT
END_VAR
VAR_INST
fbMonitor : FB_EpicsMotorMonitor;
END_VAR
TEST('Basic');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertTrue(fbMonitor.bValid, Message:='Data valid');
TEST_FINISHED();
TEST('Severities');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=0, nRBV_Severity:=2, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertFalse(fbMonitor.bValid, Message:='Invalid RBV');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=2, nMoving_Severity:=0);
fbMonitor();
AssertFalse(fbMonitor.bValid, Message:='Invalid status');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=2);
fbMonitor();
AssertFalse(fbMonitor.bValid, Message:='Invalid moving');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertTrue(fbMonitor.bValid, Message:='All valid');
TEST_FINISHED();
TEST('Moving');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0 (* DMOV *), nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertTrue(fbMonitor.bIsMoving, Message:='Moving');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=1 (* DMOV *), nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertFalse(fbMonitor.bIsMoving, Message:='Not moving');
TEST_FINISHED();
TEST('Position');
WriteData(fbMonitor:=fbMonitor, fRBV:=10.0, nMoving:=0, nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertEquals_LREAL(Actual:=fbMonitor.fPosition, Expected:=10.0, Delta:=0.1, Message:='Position 1 OK');
WriteData(fbMonitor:=fbMonitor, fRBV:=20.0, nMoving:=0, nStatus:=0, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertEquals_LREAL(Actual:=fbMonitor.fPosition, Expected:=20.0, Delta:=0.1, Message:='Position 2 OK');
TEST_FINISHED();
TEST('MSTA set');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=16#0FFFF, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertTrue(fbMonitor.stMSTA.bPositiveDirection, Message:='bPositiveDirection True');
AssertTrue(fbMonitor.stMSTA.bDone, Message:='bDone True');
AssertTrue(fbMonitor.stMSTA.bPlusLimitSwitch, Message:='bPlusLimitSwitch True');
AssertTrue(fbMonitor.stMSTA.bHomeLimitSwitch, Message:='bHomeLimitSwitch True');
AssertTrue(fbMonitor.stMSTA.bUnused0, Message:='bUnused0 True');
AssertTrue(fbMonitor.stMSTA.bClosedLoop, Message:='bClosedLoop True');
AssertTrue(fbMonitor.stMSTA.bSlipStall, Message:='bSlipStall True');
AssertTrue(fbMonitor.stMSTA.bHome, Message:='bHome True');
AssertTrue(fbMonitor.stMSTA.bEncoderPresent, Message:='bEncoderPresent True');
AssertTrue(fbMonitor.stMSTA.bHardwareProblem, Message:='bHardwareProblem True');
AssertTrue(fbMonitor.stMSTA.bMoving, Message:='bMoving True');
AssertTrue(fbMonitor.stMSTA.bGainSupport, Message:='bGainSupport True');
AssertTrue(fbMonitor.stMSTA.bCommError, Message:='bCommError True');
AssertTrue(fbMonitor.stMSTA.bMinusLimitSwitch, Message:='bMinusLimitSwitch True');
AssertTrue(fbMonitor.stMSTA.bHomed, Message:='bHomed True');
TEST_FINISHED();
TEST('MSTA zero');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=16#0000, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertFalse(fbMonitor.stMSTA.bPositiveDirection, Message:='bPositiveDirection False');
AssertFalse(fbMonitor.stMSTA.bDone, Message:='bDone False');
AssertFalse(fbMonitor.stMSTA.bPlusLimitSwitch, Message:='bPlusLimitSwitch False');
AssertFalse(fbMonitor.stMSTA.bHomeLimitSwitch, Message:='bHomeLimitSwitch False');
AssertFalse(fbMonitor.stMSTA.bUnused0, Message:='bUnused0 False');
AssertFalse(fbMonitor.stMSTA.bClosedLoop, Message:='bClosedLoop False');
AssertFalse(fbMonitor.stMSTA.bSlipStall, Message:='bSlipStall False');
AssertFalse(fbMonitor.stMSTA.bHome, Message:='bHome False');
AssertFalse(fbMonitor.stMSTA.bEncoderPresent, Message:='bEncoderPresent False');
AssertFalse(fbMonitor.stMSTA.bHardwareProblem, Message:='bHardwareProblem False');
AssertFalse(fbMonitor.stMSTA.bMoving, Message:='bMoving False');
AssertFalse(fbMonitor.stMSTA.bGainSupport, Message:='bGainSupport False');
AssertFalse(fbMonitor.stMSTA.bCommError, Message:='bCommError False');
AssertFalse(fbMonitor.stMSTA.bMinusLimitSwitch, Message:='bMinusLimitSwitch False');
AssertFalse(fbMonitor.stMSTA.bHomed, Message:='bHomed False');
TEST_FINISHED();
TEST('MSTA something');
WriteData(fbMonitor:=fbMonitor, fRBV:=0.0, nMoving:=0, nStatus:=2#0100_0011_0000_0110, nRBV_Severity:=0, nStatus_Severity:=0, nMoving_Severity:=0);
fbMonitor();
AssertFalse(fbMonitor.stMSTA.bPositiveDirection, Message:='bPositiveDirection');
AssertTrue(fbMonitor.stMSTA.bDone, Message:='bDone');
AssertTrue(fbMonitor.stMSTA.bPlusLimitSwitch, Message:='bPlusLimitSwitch');
AssertFalse(fbMonitor.stMSTA.bHomeLimitSwitch, Message:='bHomeLimitSwitch');
AssertFalse(fbMonitor.stMSTA.bUnused0, Message:='bUnused0');
AssertFalse(fbMonitor.stMSTA.bClosedLoop, Message:='bClosedLoop');
AssertFalse(fbMonitor.stMSTA.bSlipStall, Message:='bSlipStall');
AssertFalse(fbMonitor.stMSTA.bHome, Message:='bHome');
AssertTrue(fbMonitor.stMSTA.bEncoderPresent, Message:='bEncoderPresent');
AssertTrue(fbMonitor.stMSTA.bHardwareProblem, Message:='bHardwareProblem');
AssertFalse(fbMonitor.stMSTA.bMoving, Message:='bMoving');
AssertFalse(fbMonitor.stMSTA.bGainSupport, Message:='bGainSupport');
AssertFalse(fbMonitor.stMSTA.bCommError, Message:='bCommError');
AssertFalse(fbMonitor.stMSTA.bMinusLimitSwitch, Message:='bMinusLimitSwitch');
AssertTrue(fbMonitor.stMSTA.bHomed, Message:='bHomed');
TEST_FINISHED();
END_METHOD
METHOD WriteData
VAR_IN_OUT
fbMonitor : FB_EpicsMotorMonitor;
END_VAR
VAR_INPUT
fRBV : LREAL;
nMoving : INT;
nStatus : UINT;
nRBV_Severity : INT := 0;
nStatus_Severity : INT := 0;
nMoving_Severity : INT := 0;
END_VAR
WRITE_PROTECTED_INT(ADR(fbMonitor.fbRBVCheck.iPLCInternalSeverity), nRBV_Severity);
WRITE_PROTECTED_INT(ADR(fbMonitor.fbMotorStatusCheck.iPLCInternalSeverity), nStatus_Severity);
WRITE_PROTECTED_INT(ADR(fbMonitor.fbMovingCheck.iPLCInternalSeverity), nMoving_Severity);
WRITE_PROTECTED_LREAL(ADR(fbMonitor.fbRBVCheck.fPLCInternalValue), fRBV);
WRITE_PROTECTED_LREAL(ADR(fbMonitor.fbMotorStatusCheck.fPLCInternalValue), UINT_TO_LREAL(nStatus));
WRITE_PROTECTED_LREAL(ADR(fbMonitor.fbMovingCheck.fPLCInternalValue), INT_TO_LREAL(nMoving));
END_METHOD
- Related:
FB_ThermoCouple
FUNCTION_BLOCK FB_ThermoCouple
(*
Deprecated as of 2020-03-02, please use FB_TempSensor instead
2019-10-09 Zachary Lentz
*)
{warning 'Function Block FB_ThermoCouple is deprecated and may be removed in a future release'}
VAR_INPUT
// Ratio between raw value and actual temperature. Default is 10 for 10 steps per degree (or 0.1 degree resolution)
iScale: INT := 10;
END_VAR
VAR_OUTPUT
{attribute 'pytmc' := '
pv: STC:TEMP
io: input
'}
fTemp: LREAL;
{attribute 'pytmc' := '
pv: STC:CONN
io: input
field: ONAM Connected
field: ZNAM Disconnected
'}
bConnected: BOOL;
{attribute 'pytmc' := '
pv: STC:ERR
io: input
'}
bError AT %I*: BOOL;
bUnderrange AT %I*: BOOL;
bOverrange AT %I*: BOOL;
END_VAR
VAR
iRaw AT %I*: INT;
END_VAR
// The manual states that we are disconnected if we are both overrange and in an error state
bConnected := NOT (bOverrange AND bError);
fTemp := INT_TO_LREAL(iRaw) / iScale;
END_FUNCTION_BLOCK
- Related:
FB_TimeStampBuffer
FUNCTION_BLOCK FB_TimeStampBuffer
(*
A Companion to FB_LREALBuffer that accumulates timestamps
2019-10-09 Zachary Lentz
*)
VAR_INPUT
// If TRUE, we'll accumulate a value on this cycle.
bExecute: BOOL;
END_VAR
VAR_OUTPUT
arrOutput: ARRAY [1..1000] OF LREAL;
bNewArray: BOOL;
END_VAR
VAR
fbUnixTime: FB_UnixTimestamp;
fbLREALBuffer: FB_LREALBuffer;
END_VAR
fbUnixTime(
bExecute := bExecute,
fTime => fbLREALBuffer.fInput);
fbLREALBuffer(
bExecute := bExecute,
arrOutput => arrOutput,
bNewArray => bNewArray);
END_FUNCTION_BLOCK
- Related:
FB_TimeStampBufferGlobal
FUNCTION_BLOCK FB_TimeStampBufferGlobal
(*
A Variant of FB_TimeStampBuffer that uses the global timestamp.
2019-10-09 Zachary Lentz
Assumes an instance of FB_UnixTimeStampGlobal is running every cycle.
*)
VAR_INPUT
// If TRUE, we'll accumulate a value on this cycle.
bExecute: BOOL;
END_VAR
VAR_OUTPUT
arrOutput: ARRAY [1..1000] OF LREAL;
bNewArray: BOOL;
END_VAR
VAR
fbLREALBuffer: FB_LREALBuffer;
END_VAR
fbLREALBuffer(
bExecute := bExecute,
fInput := DefaultGlobals.fTimeStamp,
arrOutput => arrOutput,
bNewArray => bNewArray);
END_FUNCTION_BLOCK
FB_UnixTimeStamp
FUNCTION_BLOCK FB_UnixTimeStamp
(*
Get the unix timestamp equivalent of the PLC's time.
2019-10-09 Zachary Lentz
This will only sync with the Linux host when both hosts' clocks are correct.
Largely stolen from stack overflow
*)
VAR_INPUT
// If TRUE, we'll try to update the output on this cycle.
bExecute: BOOL;
END_VAR
VAR_OUTPUT
// Number of seconds in the timestamp
iSeconds: ULINT;
// Number of milliseconds past the seconds
iMilliseconds: ULINT;
// Full raw number
iFull: ULINT;
// Full floating point number in units of seconds
fTime: LREAL;
// TRUE if the output is okay to use on this cycle. Typically the output is zero when this is FALSE.
bValid: BOOL;
END_VAR
VAR
bInit: BOOL;
fbLocalTime: FB_LocalSystemTime;
fbGetTimeZone: FB_GetTimeZoneInformation;
fbTimeConv: FB_TzSpecificLocalTimeToFileTime;
fileTime: T_FILETIME;
END_VAR
IF NOT bInit THEN
bInit := TRUE;
fbGetTimeZone(bExecute:=TRUE, tzInfo => fbTimeConv.tzInfo);
END_IF
IF bExecute THEN
fbLocalTime(
bEnable := TRUE,
dwCycle := 1,
bValid => bValid);
IF bValid THEN
fbTimeConv(
in := SYSTEMTIME_TO_FILETIME(fbLocalTime.systemTime),
out => fileTime);
iFull := (SHL(DWORD_TO_ULINT(fileTime.dwHighDateTime), 32) + DWORD_TO_ULINT(fileTime.dwLowDateTime)) / 10000 - 11644473600000;
fTime := ULINT_TO_LREAL(iFull)/1000;
iSeconds := iFull/1000;
iMilliseconds := iFull MOD 1000;
END_IF
END_IF
END_FUNCTION_BLOCK
FB_UnixTimeStampGlobal
FUNCTION_BLOCK FB_UnixTimeStampGlobal
(*
Runs FB_UnixTimeStamp and stuffs the result into this library's GVL
2019-10-09 Zachary Lentz
*)
VAR_INPUT
// If TRUE, we will update the output on this cycle.
bExecute: BOOL;
END_VAR
VAR_OUTPUT
END_VAR
VAR
fbTimeStamp: FB_UnixTimeStamp;
END_VAR
fbTimeStamp(
bExecute := bExecute,
fTime => DefaultGlobals.fTimeStamp);
END_FUNCTION_BLOCK
- Related:
FB_XKoyoPLCModbus
//Facilitates communication between Beckhoff and Koyo PLC over the network.
FUNCTION_BLOCK FB_XKoyoPLCModbus
VAR
fbKoyo_PLCInputCoilsRx : FB_MBReadCoils; //FB for reading the coils from the other PLC
anKoyo_PLC_CnBits : ARRAY [0..20] OF BYTE; //Buffer for coil readbacks
{attribute 'naming' := 'omit'}
ftReset : F_TRIG; //Reset edge sensor
{attribute 'naming' := 'omit'}
tonRetry : TON; //Retry timer
nIndex : INT; //Index for clearing the coil array
END_VAR
VAR_INPUT
i_tRetryTime : TIME := T#10S; //Retry time if modbus transaction fails
i_sIPAddr : STRING[15]; //IP address of the Koyo PLC
END_VAR
VAR_OUTPUT
q_xNoPLCResponse : BOOL := TRUE; //Could not reach the PLC if true
q_anPLCResponse : ARRAY [0..20] OF BYTE; //Buffer of coils retrieved from the other PLC
q_xError : BOOL := FALSE; //Transaction or other error
END_VAR
(* Look ma' no wires! *)
(* A. Wallace, 2015-7-22
XKoyoPLCModbus
Facilitates communication between Beckhoff and Koyo PLC over the network.
Useful if you don't have time to run a wire. Fairly reliable.
*)
(* Modbus Info for Koyo
Modbus Addresses for
Koyo DL05/06/240/250/260/430/440/450 PLCs
PLC Memory Type | Modbus start address Decimal (octal) | Function codes
Inputs (X) 2048 (04000) 2
Special Relays (SP) 3072 (06000) 2
Outputs (Y) 2048 (04000) 1, 5, 15
Control Relays (C) 3072 (06000) 1, 5, 15
Timer Contacts (T) 6144 (014000) 1, 5, 15
Counter Contacts (CT) 6400 (014400) 1, 5, 15
Stage Status Bits (S) 6144 (012000) 1, 5, 15
*)
(* Begin code *)
// Retry after some time
tonRetry.IN := NOT fbKoyo_PLCInputCoilsRx.bBusy;
tonRetry.PT := i_tRetryTime;
tonRetry();
ftReset(CLK:=fbKoyo_PLCInputCoilsRx.bBusy);
ftReset();
fbKoyo_PLCInputCoilsRx.bExecute := ftReset.Q OR tonRetry.Q;
fbKoyo_PLCInputCoilsRx(sIPAddr:='i_sIPAddr', nTCPPort:=502, nQuantity:=32, nMBAddr:=8#6000, cbLength:=USINT_TO_UDINT(SIZEOF(anKoyo_PLC_CnBits)), pDestAddr:=ADR(anKoyo_PLC_CnBits), tTimeout:=T#10S);
//run some error code for modbus
IF fbKoyo_PLCInputCoilsRx.bError THEN
//if there's a modbus error, set all incoming bits to zero
{analysis -41} //There are one-liners for resetting an array to zero but they don't comply with 61131
FOR nIndex := 0 TO USINT_TO_INT(SIZEOF(anKoyo_PLC_CnBits))-1 DO //starts at 0
anKoyo_PLC_CnBits[nIndex]:=0;
END_FOR
{analysis +41}
q_xError := TRUE;
ELSIF ftReset.Q AND fbKoyo_PLCInputCoilsRx.cbRead > 0 THEN
fbKoyo_PLCInputCoilsRx.bExecute := FALSE;
q_xNoPLCResponse:= FALSE;
q_xError := FALSE;
//more error code cause we didn't manage to read anything
ELSIF fbKoyo_PLCInputCoilsRx.cbRead = 0 THEN
q_xError := TRUE;
q_xNoPLCResponse:= TRUE;
END_IF
q_anPLCResponse := anKoyo_PLC_CnBits;
END_FUNCTION_BLOCK
ResetCircuitBreakerGlobals
FUNCTION ResetCircuitBreakerGlobals : BOOL
VAR_INPUT
END_VAR
VAR
END_VAR
GVL_Logger.bTrickleTripped := FALSE;
GVL_Logger.nGlobAccEvents := 0;
END_FUNCTION
- Related:
RUN_TESTS
PROGRAM RUN_TESTS
VAR
// Logger
{attribute 'analysis' := '-33'}
fbCbTest : FB_CircuitBreaker_Test;
{attribute 'analysis' := '-33'}
// Data
fbCentroidTest : FB_Test_EpicsCentroidMonitor;
{attribute 'analysis' := '-33'}
fbMotorTest : FB_Test_EpicsMotorMonitor;
// EPS
{attribute 'analysis' := '-33'}
fbFlutterTest : FB_FlutterDetection_Test;
// Hardware
{attribute 'analysis' := '-33'}
fbECATAutoRestartTest : FB_ECATAutoRestart_Test;
END_VAR
TcUnit.RUN();
END_PROGRAM
SYSTEM_TIME_TO_RFC3339
//Converts Beckhoff PLC SYSTEMTIME to RFC3339 time format as a string
{attribute 'naming' := 'omit'}
{attribute 'analysis' := '-23'}
FUNCTION SYSTEM_TIME_TO_RFC3339 : STRING(255)
VAR_INPUT
{attribute 'naming' := 'omit'}
tCurrentTime : TIMESTRUCT; //TIMESTRUCT Time to convert to RFC3339
END_VAR
VAR
END_VAR
SYSTEM_TIME_TO_RFC3339 := CONCAT(REPLACE(SYSTEMTIME_TO_STRING(tCurrentTime), 'T', 1, 11), 'Z');
END_FUNCTION
TIME_TO_100NS
FUNCTION TIME_TO_100NS : ULINT
VAR_INPUT
nTime : TIME;
END_VAR
VAR
END_VAR
TIME_TO_100NS := TIME_TO_ULINT(nTime)*10000;
END_FUNCTION